5,260 research outputs found

    Probing CP violation with the electric dipole moment of atomic mercury

    Full text link
    The electric dipole moment of atomic 199^{199}Hg induced by the nuclear Schiff moment and tensor-pseudotensor electron-nucleus interactions has been calculated. For this, we have developed and employed a novel method based on the relativistic coupled-cluster theory. The results of our theoretical calculations combined with the latest experimental result of 199^{199}Hg electric dipole moment, provide new bounds on the T reversal or CP violation parameters θQCD\theta_{\rm QCD}, the tensor-pseudotensor coupling constant CTC_T and (d~u−d~d)(\widetilde{d}_u - \widetilde{d}_d). This is the most accurate calculation of these parameters to date. We highlight the the crucial role of electron correlation effects in their interplay with the P,T violating interactions. Our results demonstrate substantial changes in the results of earlier calculations of these parameters which can be attributed to the more accurate inclusion of important correlation effects in the present work.Comment: 4 pages and 1 figur

    Theoretical determination of lifetimes of metastable states in Sc III and Y III

    Full text link
    Lifetimes of the first two metastable states in Sc^{2+} and Y^{2+} are determined using the relativistic coupled-cluster theory. There is a considerable interest in studying the electron correlation effects in these ions as though their electronic configurations are similar to the neutral alkali atoms, their structures are very different from the latter. We have made a comparative study of the correlation trends between the above doubly ionized systems with their corresponding neutral and singly ionized iso-electronic systems. The lifetimes of the excited states of these ions are very important in the field of astrophysics, especially for the study of post-main sequence evolution of the cool giant stars.Comment: 13 pages, 1 figure and 5 table

    inlabru: an R package for Bayesian spatial modelling from ecological survey data

    Get PDF
    1. Spatial processes are central to many ecological processes, but fitting models that incorporate spatial correlation to data from ecological surveys is computationally challenging. This is particularly true of point pattern data (in which the primary data are the locations at which target species are found), but also true of gridded data, and of georeferenced samples from continuous spatial fields. 2. We describe here the R package inlabru that builds on the widely used RINLA package to provide easier access to Bayesian inference from spatial point process, spatial count, gridded, and georeferenced data, using integrated nested Laplace approximation (INLA, Rue et al., 2009). 3. The package provides methods for fitting spatial density surfaces and estimating abundance, as well as for plotting and prediction. It accommodates data that are points, counts, georeferenced samples, or distance sampling data. 4. This paper describes the main features of the package, illustrated by fitting models to the gorilla nest data contained in the package spatstat (Baddeley, & Turner, 2005), a line transect survey dataset contained in the package dsm (Miller, Rexstad, Burt, Bravington, & Hedley, 2018), and to a georeferenced sample from a simulated continuous spatial field

    Many-body-QED perturbation theory: Connection to the Bethe-Salpeter equation

    Full text link
    The connection between many-body theory (MBPT)--in perturbative and non-perturbative form--and quantum-electrodynamics (QED) is reviewed for systems of two fermions in an external field. The treatment is mainly based upon the recently developed covariant-evolution-operator method for QED calculations [Lindgren et al. Phys. Rep. 389, 161 (2004)], which has a structure quite akin to that of many-body perturbation theory. At the same time this procedure is closely connected to the S-matrix and the Green's-function formalisms and can therefore serve as a bridge between various approaches. It is demonstrated that the MBPT-QED scheme, when carried to all orders, leads to a Schroedinger-like equation, equivalent to the Bethe-Salpeter (BS) equation. A Bloch equation in commutator form that can be used for an "extended" or quasi-degenerate model space is derived. It has the same relation to the BS equation as has the standard Bloch equation to the ordinary Schroedinger equation and can be used to generate a perturbation expansion compatible with the BS equation also for a quasi-degenerate model space.Comment: Submitted to Canadian J of Physic

    RIDGES AND SECTORS INDUCED IN OLIVE FRUITS BY FUMIGATION WITH HYDROCYANIC ACID

    Full text link

    Ab initio study of alanine polypeptide chains twisting

    Full text link
    We have investigated the potential energy surfaces for alanine chains consisting of three and six amino acids. For these molecules we have calculated potential energy surfaces as a function of the Ramachandran angles Phi and Psi, which are widely used for the characterization of the polypeptide chains. These particular degrees of freedom are essential for the characterization of proteins folding process. Calculations have been carried out within ab initio theoretical framework based on the density functional theory and accounting for all the electrons in the system. We have determined stable conformations and calculated the energy barriers for transitions between them. Using a thermodynamic approach, we have estimated the times of characteristic transitions between these conformations. The results of our calculations have been compared with those obtained by other theoretical methods and with the available experimental data extracted from the Protein Data Base. This comparison demonstrates a reasonable correspondence of the most prominent minima on the calculated potential energy surfaces to the experimentally measured angles Phi and Psi for alanine chains appearing in native proteins. We have also investigated the influence of the secondary structure of polypeptide chains on the formation of the potential energy landscape. This analysis has been performed for the sheet and the helix conformations of chains of six amino acids.Comment: 24 pages, 10 figure

    The electron electric dipole moment enhancement factors of Rubidium and Caesium atoms

    Full text link
    The enhancement factors of the electric dipole moment (EDM) of the ground states of two paramagnetic atoms; rubidium (Rb) and caesium (Cs) which are sensitive to the electron EDM are computed using the relativistic coupled-cluster theory and our results are compared with the available calculations and measurements. The possibility of improving the limit for the electron EDM using the results of our present work is pointed out.Comment: AISAMP7 Conference paper, Accepted in Journal of Physics: Conference Series: 200

    A nonlinear approach to NN interactions using self-interacting meson fields

    Full text link
    Motivated by the success of models based on chiral symmetry in NN interactions we investigate self-interacting scalar, pseudoscalar and vector meson fields and their impact for NN forces. We parametrize the corresponding nonlinear field equations and get analytic wavelike solutions. A probability amplitude for the propagation of particle states is calculated and applied in the framework of a boson-exchange NN potential. Using a proper normalization of the meson fields makes all self-scattering amplitudes finite. The same normalization is able to substitute for the phenomenological form factors used in conventional boson exchange potentials and thus yields an phenomenological understanding of this part of the NN interaction. We find an empirical scaling law which relates the meson self-interaction couplings to the pion mass and self-interaction coupling constant. Our model yields np phase shifts comparable to the Bonn B potential results and deuteron properties, in excellent agreement with experimental data.Comment: Reviewed version, 25 pages REVTeX, more info at http://i04ktha.desy.d

    Point process models for spatio-temporal distance sampling data from a large-scale survey of blue whales

    Get PDF
    Distance sampling is a widely used method for estimating wildlife population abundance. The fact that conventional distance sampling methods are partly design-based constrains the spatial resolution at which animal density can be estimated using these methods. Estimates are usually obtained at survey stratum level. For an endangered species such as the blue whale, it is desirable to estimate density and abundance at a finer spatial scale than stratum. Temporal variation in the spatial structure is also important. We formulate the process generating distance sampling data as a thinned spatial point process and propose model-based inference using a spatial log-Gaussian Cox process. The method adopts a flexible stochastic partial differential equation (SPDE) approach to model spatial structure in density that is not accounted for by explanatory variables, and integrated nested Laplace approximation (INLA) for Bayesian inference. It allows simultaneous fitting of detection and density models and permits prediction of density at an arbitrarily fine scale. We estimate blue whale density in the Eastern Tropical Pacific Ocean from thirteen shipboard surveys conducted over 22 years. We find that higher blue whale density is associated with colder sea surface temperatures in space, and although there is some positive association between density and mean annual temperature, our estimates are consitent with no trend in density across years. Our analysis also indicates that there is substantial spatially structured variation in density that is not explained by available covariates.Comment: 33 pages 19 figure
    • …
    corecore