437 research outputs found

    Time-Dependent Statistical and Correlation Properties of Neural Signals during Handwriting

    Get PDF
    To elucidate the cortical control of handwriting, we examined time-dependent statistical and correlational properties of simultaneously recorded 64-channel electroencephalograms (EEGs) and electromyograms (EMGs) of intrinsic hand muscles. We introduced a statistical method, which offered advantages compared to conventional coherence methods. In contrast to coherence methods, which operate in the frequency domain, our method enabled us to study the functional association between different neural regions in the time domain. In our experiments, subjects performed about 400 stereotypical trials during which they wrote a single character. These trials provided time-dependent EMG and EEG data capturing different handwriting epochs. The set of trials was treated as a statistical ensemble, and time-dependent correlation functions between neural signals were computed by averaging over that ensemble. We found that trial-to-trial variability of both the EMGs and EEGs was well described by a log-normal distribution with time-dependent parameters, which was clearly distinguished from the normal (Gaussian) distribution. We found strong and long-lasting EMG/EMG correlations, whereas EEG/EEG correlations, which were also quite strong, were short-lived with a characteristic correlation durations on the order of 100 ms or less. Our computations of correlation functions were restricted to the spectral range (13–30 Hz) of EEG signals where we found the strongest effects related to handwriting. Although, all subjects involved in our experiments were right-hand writers, we observed a clear symmetry between left and right motor areas: inter-channel correlations were strong if both channels were located over the left or right hemispheres, and 2–3 times weaker if the EEG channels were located over different hemispheres. Although we observed synchronized changes in the mean energies of EEG and EMG signals, we found that EEG/EMG correlations were much weaker than EEG/EEG and EMG/EMG correlations. The absence of strong correlations between EMG and EEG signals indicates that (i) a large fraction of the EEG signal includes electrical activity unrelated to low-level motor variability; (ii) neural processing of cortically-derived signals by spinal circuitry may reduce the correlation between EEG and EMG signals

    Body Mass Index Associations Between Mother and Offspring from Birth to Age 18: The Fels Longitudinal Study

    Get PDF
    Background: Parental obesity is a known determinant of childhood obesity. Previous research has shown a strong maternal influence on body mass index (BMI) during infancy and early childhood. Objectives: The purpose of this research was to investigate the BMI associations between mother and offspring from birth to age 18 years. Methods: Participants were selected from the Fels Longitudinal Study. The current study sample includes 427 (215 mother/son and 212 mother/daughter) mother/child pairs. These pairs are repeatedly measured at multiple age groups in children, resulting in a total of 6,263 (3,215 mother/son, 3,048 mother/daughter) observations for data analysis. Inclusion criteria were children with measured height and weight for BMI collected at ages 0 to 18 years and their mother with BMI data. Maternal influences of BMI on offspring BMI from birth to early adulthood were analyzed by Spearman correlations and linear regression analyses. Results: Mother/son BMI correlations became statistically significant (p ≀ 0.05) at age 5–6 years and were significant through puberty and into early adulthood at age 18 years. Mother/daughter correlations became significant at age 1.5 years and also continued through adolescence, puberty and early adulthood at age 18 years. Associations persisted after the study sample was grouped into life stages and adjusted for decade of birth and parity. Conclusions: The mother/daughter relationship was more strongly correlated than the mother/son relationship and also became statistically significant at an earlier age than boys

    Sodium bicarbonate and high-intensity-cycling capacity: variability in responses

    Get PDF
    Purpose: The aim of this study was to determine whether gastrointestinal (GI) distress affects the ergogenicity of sodium bicarbonate and whether the degree of alkalaemia or other metabolic responses are different between individuals who improve exercise capacity and those who do not. Methods: Twenty-one males completed two cycling capacity tests at 110% of maximum power output. Participants were supplemented with 0.3 g∙kg-1BM of either placebo (maltodextrin) or sodium bicarbonate (SB). Blood pH, bicarbonate, base excess and lactate were determined at baseline, pre-exercise, immediately post-exercise and 5 minutes post-exercise. Results: SB supplementation did not significantly increase total work done (TWD) (P = 0.16, 46.8 ± 9.1 vs. 45.6 ± 8.4 kJ, d = 0.14), although magnitude based inferences suggested a 63% likelihood of a positive effect. When data were analysed without four participants who experienced GI discomfort, TWD (P = 0.01) was significantly improved with SB. Immediately post-exercise blood lactate was higher in SB for the individuals who improved but not for those who didn’t. There were also differences in the pre to post-exercise change in blood pH, bicarbonate and base excess between individuals who improved and individuals who did not. Conclusions: SB improved high intensity cycling capacity, but only with the exclusion of participants experiencing GI discomfort. Differences in blood responses suggest that sodium bicarbonate may not be beneficial to all individuals. Magnitude based inferences suggested that the exercise effects are unlikely to be negative; therefore individuals should determine whether they respond well to sodium bicarbonate supplementation prior to competition

    The influence of institutional factors on corporate narratives: a thematic content analysis of Guinness

    Get PDF
    This paper provides a thematic content analysis of the Chairman’s Statement of Arthur Guinness & Son Ltd over time. The analysis traces the evolution of the content over four distinct periods using a coding scheme developed from extant research. The objective is to study whether the corporate narratives change in line with the institutional factors over time. To interpret the results, we draw on an institutional theory-based lens to offer potential explanations of some of the change and stability noted. Institutions can constrain behaviour, but they can also support and empower agents to bring about change. The results of the longitudinal content analysis reveals some variations over time, but in general the content is relatively stable. This may be explained by the organisation itself being an institution that is sufficiently institutionalised so that corporate reporting remained relatively stable. This suggests Guinness may be an example of a strong institution over time. "The final, definitive version of this paper has been published in Accounting History, 2020, 25(3), 425-447, published by SAGE Publishing. Available online: https://doi.org/10.1177/1032373219881811. DOI: 10.1177/1032373219881811. Please cite the published version.

    Recognition of Handwriting from Electromyography

    Get PDF
    Handwriting – one of the most important developments in human culture – is also a methodological tool in several scientific disciplines, most importantly handwriting recognition methods, graphology and medical diagnostics. Previous studies have relied largely on the analyses of handwritten traces or kinematic analysis of handwriting; whereas electromyographic (EMG) signals associated with handwriting have received little attention. Here we show for the first time, a method in which EMG signals generated by hand and forearm muscles during handwriting activity are reliably translated into both algorithm-generated handwriting traces and font characters using decoding algorithms. Our results demonstrate the feasibility of recreating handwriting solely from EMG signals – the finding that can be utilized in computer peripherals and myoelectric prosthetic devices. Moreover, this approach may provide a rapid and sensitive method for diagnosing a variety of neurogenerative diseases before other symptoms become clear

    Frequency and type of adverse analytical findings in athletics: Differences among disciplines.

    Get PDF
    Athletics is a highly diverse sport that contains a set of disciplines grouped into jumps, throws, races of varying distances, and combined events. From a physiological standpoint, the physical capabilities linked to success are quite different among disciplines, with varying involvements of muscle strength, muscle power, and endurance. Thus, the use of banned substances in athletics might be dictated by physical dimensions of each discipline. Thus, the aim of this investigation was to analyse the number and distribution of adverse analytical findings per drug class in athletic disciplines. The data included in this investigation were gathered from the Anti-Doping Testing Figure Report made available by the World Anti-Doping Agency (from 2016 to 2018). Interestingly, there were no differences in the frequency of adverse findings (overall, 0.95%, range from 0.77 to 1.70%) among disciplines despite long distance runners having the highest number of samples analysed per year ( 9812 samples/year). Sprinters and throwers presented abnormally high proportions of adverse analytical findings within the group of anabolic agents (p < 0.01); middle- and long-distance runners presented atypically high proportions of findings related to peptide hormones and growth factors (p < 0.01); racewalkers presented atypically high proportions of banned diuretics and masking agents (p = 0.05). These results suggest that the proportion of athletes that are using banned substances is similar among the different disciplines of athletics. However, there are substantial differences in the class of drugs more commonly used in each discipline. This information can be used to effectively enhance anti-doping testing protocols in athletics.post-print1.911 K

    Accelerating Community College Graduation Rates: A Benefit–Cost Analysis

    Get PDF
    This article reports a benefit–cost evaluation of the Accelerated Study in Associate Programs (ASAP) of the City University of New York (CUNY). ASAP was designed to accelerate associate degree completion within 3 years of degree enrollment at CUNY’s community colleges. The program evaluation revealed that the completion rate for the examined cohort increased from 24.1% to 54.9%, and cost per graduate declined considerably (Levin & Garcia, 2012; Linderman & Kolenovic, 2012). The returns on investment to the taxpayer include the benefits from higher tax revenues and lower costs of spending on public health, criminal justice, and public assistance. For each dollar of investment in ASAP by taxpayers, the return was 3to3 to 4. For each additional graduate, the taxpayer gained an amount equal to a certificate of deposit with a value of 146,000(netofthecostsoftheinvestment).Basedontheseestimatedreturns,acohortof1,000studentsenrolledinASAPwouldgeneratenetfiscalbenefitsforthetaxpayerofmorethan146,000 (net of the costs of the investment). Based on these estimated returns, a cohort of 1,000 students enrolled in ASAP would generate net fiscal benefits for the taxpayer of more than 46 million relative to enrolling in the conventional degree program. ASAP results demonstrate that an effective educational policy can generate returns to the taxpayer that vastly exceed the public investment required
    • 

    corecore