1,331 research outputs found

    Cosmology with X-ray Cluster Baryons

    Get PDF
    X-ray cluster measurements interpreted with a universal baryon/gas mass fraction can theoretically serve as a cosmological distance probe. We examine issues of cosmological sensitivity for current (e.g. Chandra X-ray Observatory, XMM-Newton) and next generation (e.g. Con-X, XEUS) observations, along with systematic uncertainties and biases. To give competitive next generation constraints on dark energy, we find that systematics will need to be controlled to better than 1% and any evolution in f_gas (and other cluster gas properties) must be calibrated so the residual uncertainty is weaker than (1+z)^{0.03}.Comment: 6 pages, 5 figures; v2: 13 pages, substantial elaboration and reordering, matches JCAP versio

    Growth of High-Mobility Bi2Te2Se Nanoplatelets on hBN Sheets by van der Waals Epitaxy

    Full text link
    The electrical detection of the surface states of topological insulators is strongly impeded by the interference of bulk conduction, which commonly arises due to pronounced doping associated with the formation of lattice defects. As exemplified by the topological insulator Bi2Te2Se, we show that via van der Waals epitaxial growth on thin hBN substrates the structural quality of such nanoplatelets can be substantially improved. The surface state carrier mobility of nanoplatelets on hBN is increased by a factor of about 3 compared to platelets on conventional Si/SiOx substrates, which enables the observation of well-developed Shubnikov-de Haas oscillations. We furthermore demonstrate the possibility to effectively tune the Fermi level position in the films with the aid of a back gate

    Prediction of Anisotropic Single-Dirac-Cones in Bi1x{}_{1-x}Sbx{}_{x} Thin Films

    Full text link
    The electronic band structures of Bi1x{}_{1-x}Sbx{}_{x} thin films can be varied as a function of temperature, pressure, stoichiometry, film thickness and growth orientation. We here show how different anisotropic single-Dirac-cones can be constructed in a Bi1x{}_{1-x}Sbx{}_{x} thin film for different applications or research purposes. For predicting anisotropic single-Dirac-cones, we have developed an iterative-two-dimensional-two-band model to get a consistent inverse-effective-mass-tensor and band-gap, which can be used in a general two-dimensional system that has a non-parabolic dispersion relation as in a Bi1x{}_{1-x}Sbx{}_{x} thin film system

    AsiFood and its output and prospects: An Erasmus+ project on capacity building in food safety and quality for South-East Asia

    Get PDF
    The Asifood project is a capacity building project in the field of higher education involving collaboration among thirteen partners from Cambodia, Thailand, Vietnam, Austria, Belgium, Italy and France. This project aimed to support the universities in Vietnam, Thailand and Cambodia in building their capacities and their link with professionals in food safety and food quality, in the context of ASEAN integration. Further, training for trainers around a key theme, ‘food safety and quality’ for partner countries was set up involving students and teachers, professional stakeholders, political decision-makers and association leaders. During the first year of the project, study and diagnostic phase were carried out to properly assess the training as per each university needs. In the second year, the training paths around three axes: courses, quality and laboratory analysis were conducted. Finally, a test phase was carried out with the partners by inserting the modules created in the bachelor's and master's degree courses offered by the universities as well as short term trainings on innovations in food safety and quali

    Superconductor-ferromagnet junction phase qubit

    Full text link
    We propose a scheme for a phase qubit in an SIFIS junction, consisting of bulk superconductors (S), a proximity-induced ferromagnet (F), and insulating barriers (I). The qubit state is constituted by 0 and π\pi phase states of the junction, in which the charging energy of the junction leads to the superposition of the two states. The qubit is operated by the gate voltage applied to the ferromagnet, and insensitive to the decoherence sources existing in other superconducting qubits. We discuss a scalable scheme for qubit measurement and tunable two-qubit coupling.Comment: 3 pages, 3 figure

    Symmetry and Topology in Superconductors - Odd-frequency pairing and edge states -

    Full text link
    Superconductivity is a phenomenon where the macroscopic quantum coherence appears due to the pairing of electrons. This offers a fascinating arena to study the physics of broken gauge symmetry. However, the important symmetries in superconductors are not only the gauge invariance. Especially, the symmetry properties of the pairing, i.e., the parity and spin-singlet/spin-triplet, determine the physical properties of the superconducting state. Recently it has been recognized that there is the important third symmetry of the pair amplitude, i.e., even or odd parity with respect to the frequency. The conventional uniform superconducting states correspond to the even-frequency pairing, but the recent finding is that the odd-frequency pair amplitude arises in the spatially non-uniform situation quite ubiquitously. Especially, this is the case in the Andreev bound state (ABS) appearing at the surface/interface of the sample. The other important recent development is on the nontrivial topological aspects of superconductors. As the band insulators are classified by topological indices into (i) conventional insulator, (ii) quantum Hall insulator, and (iii) topological insulator, also are the gapped superconductors. The influence of the nontrivial topology of the bulk states appears as the edge or surface of the sample. In the superconductors, this leads to the formation of zero energy ABS (ZEABS). Therefore, the ABSs of the superconductors are the place where the symmetry and topology meet each other which offer the stage of rich physics. In this review, we discuss the physics of ABS from the viewpoint of the odd-frequency pairing, the topological bulk-edge correspondence, and the interplay of these two issues. It is described how the symmetry of the pairing and topological indices determines the absence/presence of the ZEABS, its energy dispersion, and properties as the Majorana fermions.Comment: 91 pages, 38 figures, Review article, references adde

    Cosmic coincidence problem and variable constants of physics

    Full text link
    The standard model of cosmology is investigated using time dependent cosmological constant Λ\Lambda and Newton's gravitational constant GG. The total energy content is described by the modified Chaplygin gas equation of state. It is found that the time dependent constants coupled with the modified Chaplygin gas interpolate between the earlier matter to the later dark energy dominated phase of the universe. We also achieve a convergence of parameter ω1\omega\to-1, with minute fluctuations, showing an evolving ω\omega. Thus our model fairly alleviates the cosmic coincidence problem which demands ω=1\omega=-1 at present time.Comment: 27 pages, 15 figure

    The growth of matter perturbations in some scalar-tensor DE models

    Full text link
    We consider asymptotically stable scalar-tensor dark energy (DE) models for which the equation of state parameter wDEw_{DE} tends to zero in the past. The viable models are of the phantom type today, however this phantomness is milder than in General Relativity if we take into account the varying gravitational constant when dealing with the SNIa data. We study further the growth of matter perturbations and we find a scaling behaviour on large redshifts which could provide an important constraint. In particular the growth of matter perturbations on large redshifts in our scalar-tensor models is close to the standard behaviour δma\delta_m \propto a, while it is substantially different for the best-fit model in General Relativity for the same parametrization of the background expansion. As for the growth of matter perturbations on small redshifts, we show that in these models the parameter γ0γ(z=0)\gamma'_0\equiv \gamma'(z=0) can take absolute values much larger than in models inside General Relativity. Assuming a constant γ\gamma when γ0\gamma'_0 is large would lead to a poor fit of the growth function ff. This provides another characteristic discriminative signature for these models.Comment: 13 pages, 7 figures, matches version published in JCA

    Constraining f(R) gravity in the Palatini formalism

    Full text link
    Although several models of f(R)f(R) theories of gravity within the Palatini approach have been studied already, the interest was concentrated on those that have an effect on the late-time evolution of the universe, by the inclusion for example of terms inversely proportional to the scalar curvature in the gravitational action. However, additional positive powers of the curvature also provide interesting early-time phenomenology, like inflation, and the presence of such terms in the action is equally, if not more, probable. In the present paper models with both additional positive and negative powers of the scalar curvature are studied. Their effect on the evolution of the universe is investigated for all cosmological eras, and various constraints are put on the extra terms in the actions. Additionally, we examine the extent to which the new terms in positive powers affect the late-time evolution of the universe and the related observables, which also determines our ability to probe their presence in the gravitational action.Comment: reference update and minor changes to match published versio
    corecore