5,582 research outputs found

    Generalized keesom potential

    Get PDF
    Field theoretic approach for generalization of expressions for adiabatic interaction between two rotating dipolar system

    Development of phase-change coatings for use as variable thermal control surfaces Final report

    Get PDF
    Phase change coatings for use as variable thermal control surface

    Development of phase-change coatings for use as variable thermal control surfaces Final report, 8 Mar. 1967 - 8 Mar. 1968

    Get PDF
    Development of phase-change coatings for thermal control of spacecraft surface

    Uniqueness of Current Cosmic Acceleration

    Full text link
    One of the strongest arguments against the cosmological constant as an explanation of the current epoch of accelerated cosmic expansion is the existence of an earlier, dynamical acceleration, i.e. inflation. We examine the likelihood that acceleration is an occasional phenomenon, putting stringent limits on the length of any accelerating epoch between recombination and the recent acceleration; such an epoch must last less than 0.05 e-fold (at z>2) or the matter power spectrum is modified by more than 20%.Comment: 6 pages, 5 figures; v2 corrected typo in Eq.

    Single stage experimental evaluation of slotted rotor and stator blading. Part I - Analysis and design

    Get PDF
    Analysis and design of slotted rotor and stator blading for application to compressors in advanced airbreathing propulsion system

    Parametric resonance for antineutrino conversions using LSND best-fit results with a 3+1 flavor scheme

    Get PDF
    An analytical solution to a parametric resonance effect for antineutrinos in a 3+1 flavor (active+sterile) scheme using multiple non-adiabatic density shifts is presented. We derive the conditions for a full flavor conversion for antineutrino oscillations νˉα→νˉs\bar{\nu}_\alpha \to \bar{\nu}_s (α=e,μ,τ)(\alpha=e,\mu,\tau) under the assumption that LSND best-fits for the mixing parameters are valid in a short-baseline accelerator experiment. We show that the parametric resonance effect can be exploited to increase the effective antineutrino oscillation length by a factor of 10-40, thus sustaining a high oscillation probability for a much longer period of time than in the vacuum scenario. We propose a realistic experimental setup that could probe for this effect which leaves a signature in terms of a specific oscillation probability profile. Moreover, since the parametric resonance effect is valid in any 2 or 1+1 flavor approximation, our results could be suggestive for future short-baseline accelerator neutrino detection experiments.Comment: 6 pages, 4 figure

    Systematic Errors in Future Weak Lensing Surveys: Requirements and Prospects for Self-Calibration

    Full text link
    We study the impact of systematic errors on planned weak lensing surveys and compute the requirements on their contributions so that they are not a dominant source of the cosmological parameter error budget. The generic types of error we consider are multiplicative and additive errors in measurements of shear, as well as photometric redshift errors. In general, more powerful surveys have stronger systematic requirements. For example, for a SNAP-type survey the multiplicative error in shear needs to be smaller than 1%(fsky/0.025)^{-1/2} of the mean shear in any given redshift bin, while the centroids of photometric redshift bins need to be known to better than 0.003(fsky/0.025)^{-1/2}. With about a factor of two degradation in cosmological parameter errors, future surveys can enter a self-calibration regime, where the mean systematic biases are self-consistently determined from the survey and only higher-order moments of the systematics contribute. Interestingly, once the power spectrum measurements are combined with the bispectrum, the self-calibration regime in the variation of the equation of state of dark energy w_a is attained with only a 20-30% error degradation.Comment: 20 pages, 9 figures, to be submitted to MNRAS. Comments are welcom

    What will anisotropies in the clustering pattern in redshifted 21 cm maps tell us?

    Full text link
    The clustering pattern in high redshift HI maps is expected to be anisotropic due to two distinct reasons, the Alcock-Paczynski effect and the peculiar velocities, both of which are sensitive to the cosmological parameters. The signal is also expected to be sensitive to the details of the HI distribution at the epoch when the radiation originated. We use simple models for the HI distribution at the epoch of reionizaation and the post-reionization era to investigate exactly what we hope to learn from future observations of the anisotropy pattern in HI maps. We find that such observations will probably tell us more about the HI distribution than about the background cosmological model. Assuming that reionization can be described by spherical, ionized bubbles all of the same size with their centers possibly being biased with respect to the dark matter, we find that the anisotropy pattern at small angles is expected to have a bump at the characteristic angular size of the individual bubbles whereas the large scale anisotropy pattern will reflect the size and the bias of the bubbles. The anisotropy also depends on the background cosmological parameters, but the dependence is much weaker. Under the assumption that the HI in the post-reionization era traces the dark matter with a possible bias, we find that changing the bias and changing the background cosmology has similar effects on the anisotropy pattern. Combining observations of the anisotropy with independent estimates of the bias, possibly from the bi-spectrum, may allow these observations to constrain cosmological parameters.Comment: Minor changes, Accepted to MNRA
    • …
    corecore