7,399 research outputs found
Exploring the Expansion History of the Universe
Exploring the recent expansion history of the universe promises insights into
the cosmological model, the nature of dark energy, and potentially clues to
high energy physics theories and gravitation. We examine the extent to which
precision distance-redshift observations can map out the history, including the
acceleration-deceleration transition, and the components and equations of state
of the energy density. We consider the ability to distinguish between various
dynamical scalar field models for the dark energy, as well as higher dimension
and alternate gravity theories. Finally, we present a new, advantageous
parametrization for the study of dark energy.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Letter
Physics of SNeIa and Cosmology
We give an overview of the current understanding of Type Ia supernovae
relevant for their use as cosmological distance indicators. We present the
physical basis to understand their homogeneity of the observed light curves and
spectra and the observed correlations. This provides a robust method to
determine the Hubble constant, 67 +- 8 (2 sigma) km/Mpc/sec, independently from
primary distance indicators.
We discuss the uncertainties and tests which include SNe Ia based distance
determinations prior to delta-Ceph. measurements for the host galaxies. Based
on detailed models, we study the small variations from homogeneities and their
observable consequences. In combination with future data, this underlines the
suitability and promises the refinements needed to determine accurate relative
distances within 2 to 3 % and to use SNe Ia for high precision cosmology.Comment: to be published in "Stellar Candles", eds. Gieren et al. Lecture
Notes in Physics (http://link.springer.de/series/lnpp
Dark energy records in lensed cosmic microwave background
We consider the weak lensing effect induced by linear cosmological
perturbations on the cosmic microwave background (CMB) polarization
anisotropies. We find that the amplitude of the lensing peak in the BB mode
power spectrum is a faithful tracer of the dark energy dynamics at the onset of
cosmic acceleration. This is due to two reasons. First, the lensing power is
non-zero only at intermediate redshifts between the observer and the source,
keeping record of the linear perturbation growth rate at the corresponding
epoch. Second, the BB lensing signal is expected to dominate over the other
sources. The lensing distortion on the TT and EE spectra do exhibit a similar
dependence on the dark energy dynamics, although those are dominated by primary
anisotropies. We investigate and quantify the effect by means of exact tracking
quintessence models, as well as parameterizing the dark energy equation of
state in terms of the present value () and its asymptotic value in the
past (); in the interval allowed by the present constraints on dark
energy, the variation of induces a significant change in the BB
mode lensing amplitude. A Fisher matrix analysis, under conservative
assumptions concerning the increase of the sample variance due to the lensing
non-Gaussian statistics, shows that a precision of order 10% on both
and is achievable by the future experiments probing a large sky
area with angular resolution and sensitivity appropriate to detect the lensing
effect on the CMB angular power spectrum. These results show that the CMB can
probe the differential redshift behavior of the dark energy equation of state,
beyond its average.Comment: New version including substantial text change, three more figures and
two more table
Phase-controlled proximity-effect in ferromagnetic Josephson junctions: calculation of DOS and electronic specific heat
We study the thermodynamic properties of a dirty ferromagnetic
SFS Josephson junction with s-wave superconducting leads in the
low-temperature regime. We employ a full numerical solution with a set of
realistic parameters and boundary conditions, considering both a uniform and
non-uniform exchange field in the form of a Bloch domain wall ferromagnetic
layer. The influence of spin-active interfaces is incorporated via a
microscopic approach. We mainly focus on how the electronic specific heat and
density of states (DOS) of such a system is affected by the \textit{proximity
effect}, which may be tuned via the superconducting phase difference. Our main
result is that it is possible to \textit{strongly modify the electronic
specific heat} of the system by changing the phase difference between the two
superconducting leads from 0 up to nearly at low temperatures. An
enhancement of the specific heat will occur for small values of
the exchange field, while for large values of the specific heat is
suppressed by increasing the phase difference between the superconducting
leads. These results are all explained in terms of the proximity-altered DOS in
the ferromagnetic region, and we discuss possible methods for experimental
detection of the predicted effect.Comment: 7 pages, 5 figure
Net ecosystem productivity and its uncertainty in a diverse boreal peatland
Net ecosystem exchange (NEE) of CO2 was measured in four peatlands along plant community, hydrologic, and water chemistry gradients from bog to rich fen in a diverse peatland complex near Thompson, Manitoba, as part of the Boreal Ecosystem-Atmosphere Study (BOREAS). A simple model for estimating growing season net ecosystem productivity (NEP) using continuous measurements of photosynthetically active radiation (PAR), and peat temperature was constructed with weekly chamber measurements of NEE from May to October 1996. The model explained 79–83% of the variation in NEE across the four sites. Model estimation and parameter uncertainty calculations were performed using nonlinear regression analyses with a maximum likelihood objective function. The model underestimated maximum NEE and respiration during the midseason when the standard errors for each parameter were greatest. On a daily basis, uncertainty in the midday NEE simulation was higher than at night. Although the magnitude of both photosynthesis and respiration rates followed the trophic gradient bog less than poor fen less than intermediate fen less than rich fen, NEP did not follow the same pattern. NEP in the bog and rich fen was close to zero, while the poor and intermediate fens had higher NEP due to a greater imbalance between uptake and release of CO2. Although all sites had a positive growing season NEP, upper and lower 95% confidence limits showed that the bog and rich fen were either a source or sink of CO2 to the atmosphere, while the sedge-dominated poor and intermediate fens were accumulating approximately 20–100 g CO2 C m−2over the 5 month period in 1996. Peatland ecosystems may switch from a net sink to a source of carbon on short timescales with small changes in soil temperature or water table position. Since the difference between production and decomposition is small, it is important to understand and quantify the magnitude of uncertainty in these measurements in order to predict the effect of climatic change on peatland carbon exchange
The Limits of Quintessence
We present evidence that the simplest particle-physics scalar-field models of
dynamical dark energy can be separated into distinct behaviors based on the
acceleration or deceleration of the field as it evolves down its potential
towards a zero minimum. We show that these models occupy narrow regions in the
phase-plane of w and w', the dark energy equation-of-state and its
time-derivative in units of the Hubble time. Restricting an energy scale of the
dark energy microphysics limits how closely a scalar field can resemble a
cosmological constant. These results, indicating a desired measurement
resolution of order \sigma(w')\approx (1+w), define firm targets for
observational tests of the physics of dark energy.Comment: 4 pages, 2 figure
Evolutionary models of cold and low-mass planets: Cooling curves, magnitudes, and detectability
Future instruments like NIRCam and MIRI on JWST or METIS at the ELT will be
able to image exoplanets that are too faint for current direct imaging
instruments. Evolutionary models predicting the planetary intrinsic luminosity
as a function of time have traditionally concentrated on gas-dominated giant
planets. We extend these cooling curves to Saturnian and Neptunian planets. We
simulate the cooling of isolated core-dominated and gas giant planets with
masses of 5 Earthmasses to 2 Jupitermasses. The luminosity includes the
contribution from the cooling and contraction of the core and of the H/He
envelope, as well as radiogenic decay. For the atmosphere we use grey,
AMES-Cond, petitCODE, and HELIOS models. We consider solar and non-solar
metallicities as well as cloud-free and cloudy atmospheres. The most important
initial conditions, namely the core-to-envelope ratio and the initial
luminosity are taken from planet formation simulations based on the core
accretion paradigm. We first compare our cooling curves for Uranus, Neptune,
Jupiter, Saturn, GJ 436b, and a 5 Earthmass-planet with a 1% H/He envelope with
other evolutionary models. We then present the temporal evolution of planets
with masses between 5 Earthmasses and 2 Jupitermasses in terms of their
luminosity, effective temperature, radius, and entropy. We discuss the impact
of different post formation entropies. For the different atmosphere types and
initial conditions magnitudes in various filter bands between 0.9 and 30
micrometer wavelength are provided. Using black body fluxes and non-grey
spectra, we estimate the detectability of such planets with JWST. It is found
that a 20 (100) Earthmass-planet can be detected with JWST in the background
limit up to an age of about 10 (100) Myr with NIRCam and MIRI, respectively.Comment: Language corrected version and improved arrangements of figures,
online data at:
http://www.space.unibe.ch/research/research_groups/planets_in_time/numerical_data/index_eng.htm
Saccadic eye movement during spaceflight
Saccadic eye movements were studied in six subjects during two Space Shuttle missions. Reaction time, peak velocity and accuracy of horizontal, visually-guided saccades were examined preflight, inflight and postflight. Conventional electro-oculography was used to record eye position, with the subjects responding to pseudo-randomly illuminated targets at 0 deg and + or - 10 deg and 20 deg visual angles. In all subjects, preflight measurements were within normal limits. Reaction time was significantly increased inflight, while peak velocity was significantly decreased. A tendency toward a greater proportion of hypometric saccades inflight was also noted. Possible explanations for these changes and possible correlations with space motion sickness are discussed
Spontaneously Localized Photonic Modes Due to Disorder in the Dielectric Constant
We present the first experimental evidence for the existence of strongly
localized photonic modes due to random two dimensional fluctuations in the
dielectric constant. In one direction, the modes are trapped by ordered Bragg
reflecting mirrors of a planar, one wavelength long, microcavity. In the cavity
plane, they are localized by disorder, which is due to randomness in the
position, composition and sizes of quantum dots located in the anti-node of the
cavity. We extend the theory of disorder induced strong localization of
electron states to optical modes and obtain quantitative agreement with the
main experimental observations.Comment: 6 page
- …
