64 research outputs found

    Stable isotope dilution assay for the accurate determination of mycotoxins in maize by UHPLC-MS/MS

    Get PDF
    A fast, easy-to-handle and cost-effective analytical method for 11 mycotoxins currently regulated in maize and other cereal-based food products in Europe was developed and validated for maize. The method is based on two extraction steps using different acidified acetonitrile–water mixtures. Separation is achieved using ultrahigh-performance liquid chromatography (UHPLC) by a linear water–methanol gradient. After electrospray ionisation, tandem mass spectrometric detection is performed in dynamic multiple reaction monitoring mode. Since accurate mass spectrometric quantification is hampered by matrix effects, uniformly [13C]-labelled mycotoxins for each of the 11 compounds were added to the sample extracts prior to UHPLC-MS/MS analysis. Method performance parameters were obtained by spiking blank maize samples with mycotoxins before as well as after extraction on six levels in triplicates. The twofold extraction led to total recoveries of the extraction steps between 97% and 111% for all target analytes, including fumonisins. The [13C]-labelled internal standards efficiently compensated all matrix effects in electrospray ionisation, leading to apparent recoveries between 88% and 105% with reasonable additional costs. The relative standard deviations of the whole method were between 4% and 11% for all analytes. The trueness of the method was verified by the measurement of several maize test materials with well-characterized concentrations. In conclusion, the developed method is capable of determining all regulated mycotoxins in maize and presuming similar matrix effects and extraction recovery also in other cereal-based foods

    Effect of Dietary Advanced Glycation End Products on Mouse Liver

    Get PDF
    The exact pathophysiology of non-alcoholic steatohepatitis (NASH) is not known. Previous studies suggest that dietary advanced glycation end products (AGEs) can cause oxidative stress in liver. We aim to study the effects of dietary AGEs on liver health and their possible role in the pathogenesis of NASH. METHODS: Two groups of mice were fed the same diet except the AGE content varied. One group was fed a high AGE diet and the second group was fed a regular AGE diet. Liver histology, alanine aminotransferase, aspartate aminotransferase, fasting glucose, fasting insulin, insulin resistance and glucose tolerance were assessed. RESULTS: Histology revealed that neutrophil infiltration occurred in the livers of the high AGE group at week 26; steatosis did not accompany liver inflammation. At week 39 livers from both groups exhibited macro- or micro-steatosis, yet no inflammation was detected. Higher insulin levels were detected in the regular AGE group at week 26 (P = 0.034), compared to the high AGE group. At week 39, the regular AGE group showed higher levels of alanine aminotransferase (P<0.01) and aspartate aminotransferase (P = 0.02) than those of the high AGE group. CONCLUSIONS: We demonstrate that a high AGE diet can cause liver inflammation in the absence of steatosis. Our results show that dietary AGEs could play a role in initiating liver inflammation contributing to the disease progression of NASH. Our observation that the inflammation caused by high AGE alone did not persist suggests interesting future directions to investigate how AGEs contribute to pro-oxidative and anti-oxidative pathways in the liver
    • …
    corecore