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Executive Summary

This report was revised in September 2008 to remove acid-ectractable sodium data from Table 4.17. The
sodium data was removed due to potential contamination introduced during the acid extraction process. The
rest of the text remains unchanged from the original report issued in December 2002.

The overall goal of the of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group,
Inc., is to define risks from past and future single-shell tank farm activities. To meet this goal, CH2M
HILL Hanford Group, Inc., asked scientists from Pacific Northwest National Laboratory to perform
detailed analyses on vadose zone sediment from within the B-BX-BY Waste Management Area. This
report is the third in a series of three reports to present the results of these analyses. Specifically, this
report contains all the geologic, geochemical, and selected physical characterization data collected on
vadose zone sediment recovered from a borehole installed approximately 4.5 m (15 ft) northeast of tank B-
110 (borehole 299-E33-46).

This report also presents our interpretation of the data in the context of the sediment lithologies, the
vertical extent of contamination, the migration potential of the contaminants, and the likely source of the
contamination in the vadose zone and groundwater east of the B Tank Farm. The information presented in
this report supports the B-BX-BY field investigation report prepared by CH2M HILL Hanford Group,
Inc.®

Overall, our analyses identified common ion exchange and heterogeneous (solid phase-liquid solute)
precipitation reactions as two mechanisms that influence the distribution of contaminants within that
portion of the vadose zone affected by tank liquor. We did not observe significant indications of caustic
alteration of the sediment mineralogy or porosity, but we did observe slightly elevated pH values between
the depths of 15 and 25 m (52 and 83 ft) bgs. X-ray diffraction measurements indicate no evidence of
mineral alteration or precipitation resulting from the interaction of the tank liquor with the sediment.
However, no scans of samples by scanning electron microscopy were performed that might suggest that
there is faint evidence of caustic attack.

Our analyses do not firmly suggest that the source of the contamination in the groundwater below and
to the east of B Tank Farm is the 1971 transfer line leak at B-110. However, we are firmly convinced that
the fluids from the transfer line leak event are present in the vadose zone sediments at borehole 299-E33-46
to a depth of 52 m (170 ft) bgs, within the Hanford H2 sand unit. Below this depth the concentration of
nitrate still appears to be slightly elevated above natural background levels. There is also elevated
technetium-99 between 68 and 69 m (222 and 226 ft) bgs in the Plio-pleistocene mud layer but we can’t
show that this contamination traveled through the entire vadose zone and in fact may have migrated
horizontally from other sources.

(a) Draft Field Investigation Report for Waste Management Area B-BX-BY. RPP-10098, Draft, Volume 2,
Appendix D, CH2M HILL Hanford Group, Inc., Richland, Washington.
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The near horizontally bedded, northeasterly dipping sediment likely caused horizontal flow of the migrating
contaminants. At borehole 299-E33-46, there are several fine-grained lens within the H2 unit at 26, 41, and
57 m (85, 168, and 186 ft) bgs that likely cause some horizontally spreading of percolating fluids. The 12.7-ft
thick Plio-pleistocene fine-grained silt/clay unit is also an important horizontal flow conduit between 66 to

69.4 m (215 to 227.7 ft) bgs.

The porewater electrical shows a two-lobed elevated plume. The shallower but more concentrated
lobe, between 15.42 and 25.91 m (50.6 and 85 ft) bgs, resides within the middle sand sequence in Hanford
H2 unit. The shallow lobe appears to pond on top of the fine-grained lens at 85 ft bgs. The slightly less
concentrated lobe resides between 27.61 and 42.67 m (90.6 to 140 ft) bgs within the Hanford H2 unit.
Thus, the leading edge of the transfer line leak plume appears to reside well above the water table at 78.0 m
(255.8 ft) bgs.

Elevated nitrate concentrations in 299-E33-46 borehole sediment start at 50.6 feet bgs but the more
concentrated zone resides between 26.8 and 51 m (87.8 and 168 ft) bgs within the Hanford H2 unit. This
more concentrated nitrate plume appears to stop at the fine-grained thin lens at 51 m (168 ft) bgs. The
peak vadose zone porewater nitrate concentration is 1.5 g/L. at 41 m (134 ft) bgs. The deeper units, H3 and
PPIz, have porewaters that contain 100 to 200 and 130 mg/L nitrate, respectively. These values appear to
be slightly elevated above natural background values. Even the coarse-grained PPIg unit that includes the
water table has porewater nitrate concentrations that hover near 50 mg/L suggesting slightly elevated
nitrate concentrations penetrate the entire vadose zone at this borehole. However, an alternate source of
nitrate within and below the PPlz could be the nearby cribs and trenches with horizontal transport within
the very moist fine-grained sediments.

Within the Hanford H2 unit the porewater fluoride and bicarbonate concentrations are also elevated
above natural background levels down to a depth of about 37 m (120 ft) bgs. The porewater cation
distributions show the ion exchange front wherein the sodium in the tank fluids pushes the naturally
occurring divalent cations (calcium, magnesium and strontium) deeper into the sediments and out in front
of the plume. The most concentrated portion of the vadose zone plume has a porewater chemical
composition that is 0.15M sodium and 0.13 M bicarbonate, 0.01 M fluoride, 0.007 M sulfate, and 0.003 M
nitrate. This composition is not as saline as contaminated porewaters below the BX-102 tank or under the
S-SX tank farm.

The only detectable radionuclides in the vadose zone sediments from borehole 299-E33-46 are
strontium-90, technetium-99 and a faint trace of water leachable uranium, which suggests non-natural
uranium at very low concentrations. Strontium-90 is considered to be the primary radionuclide released
from tank B-110 transfer line and is concentrated in the sediment between 19 and 28 m (62 and 83 ft) bgs
at concentrations between 1,000 and 11,250 pCi/g. Strontium-90 in the sediments is not readily water
leachable yielding an insitu desorption Ky value of >100 ml/g. All technetium-99 concentrations in the
shallow depths is at or below the detection limit thus it is difficult to determine if the technetium profile at
299-E33-46 can be traced from below the tank all the way to the groundwater. The two more concentrated
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peaks of technetium-99 are found in the deep H3 unit and in the PP1z unit and it is more likely that the technetium
found at the deeper depths is from some horizontal migration of fluids containing technetium-99 from other
sources that was carried to depth by active disposal of large quantities of contaminated water or

some other driving force such as domestic water line leaks, recharge from topographic lows for snow melt

etc.

In summary, the moisture content, pH, electrical conductivity, sodium, and strontium-90 profiles do not
suggest that the leading edge of the plume has penetrated below 52 m (170 ft) bgs. The profiles of two
mobile constituents, technetium-99 and nitrate, suggest that the leading edge of the plume may have
penetrated all the way to groundwater. But there may be other sources of these two mobile contaminants in
the deep vadose zone. The very moist PPlz sediments, which contain a perched water table at several
nearby wells, is a likely driving force to move fluids from other sources into the borehole environs.
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1.0 Introduction

The overall goals of the of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group,
Inc., are 1) to define risks from past and future single-shell tank farm activities, 2) to identify and evaluate
the efficacy of interim measures, and 3) to aid via collection of geotechnical information and data, the
future decisions that must be made by the Department of Energy (DOE) regarding the near-term
operations, future waste retrieval, and final closure activities for the single-shell tank Waste Management
Areas. For a more complete discussion of the goals of the Tank Farm Vadose Zone Project, see the
overall work plan, Phase 1 RCRA Facility Investigation/Corrective Measures Study Work Plan for the
Single-Shell Tank Waste Management Areas (DOE 1999). Specific details on the rationale for activities
performed at the B-BX-BY Tank Farm waste management area (WMA) are found in CH2M HILL
(2000).

To meet these goals, CH2M HILL Hanford Group, Inc., asked scientists from Pacific Northwest
National Laboratory (PNNL) to perform detailed analyses of vadose zone sediment, both uncontaminated
and contaminated, from within the B-BX-BY WMA.

Specifically, this report contains all the geologic, geochemical, and selected physical characterization
data collected on vadose zone sediment recovered from borehole 299-E33-46 that is near tank B-110. We
also provide our interpretation of the data in the context of determining the appropriate lithologic model,
the vertical extent of contamination, the migration potential of the contaminants that still reside in the
vadose zone, and the correspondence of the contaminant distribution in the borehole sediment to
groundwater plumes in the aquifer proximate and down gradient from the B Tank Farm.

This report is one in a series of three reports to present recent data collected on vadose zone
sediment, both uncontaminated and contaminated, from within the B-BX-BY WMA. Two other PNNL
reports discuss the characterization of 1) uncontaminated sediment from a Resource Conservation and
Recovery Act (RCRA) borehole [299-E33-338], to provide a baseline against information from
contaminated sediment (see Lindenmeier et al. 2002); 2) contaminated sediment obtained from the 299-
E33-45 northeast of tank BX-102 (see Serne et. al. 2002¢), which has been decommissioned. This
document describes all the characterization data collected and interpretations assembled by the Applied
Geology and Geochemistry Group within PNNL’s Environmental Technology Division. The main
objective for placing the 299-E33-46 borehole at the location ~15 ft northeast from the B-110 tank wall
was to investigate the vertical extent of strontium-90, uranium, technetium-99, and other mobile
contaminants at a spot known to contain high strontium-90 contents based on bremmstrahlung signal in
the spectral gamma logging. The borehole was extended to groundwater in order to track other mobile
contaminants that can’t be tracked with gamma logging such as technetium-99 and nitrate.
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The documents contain preliminary interpretations to identify the distribution of key contaminants within
the vadose zone and to determine what their future migration potential could be. The information will be
incorporated in the B-BX-BY field investigation report.®

This report is divided into sections that describe the geology, the geochemical characterization methods
employed, the geochemical results that emphasize determination of the vertical extent of tank fluid
migration and contaminant migration potential, as well as summary and conclusions, references cited, and
four appendixes with additional details and sediment photographs.

@) Draft Field Investigation Report for Waste Management Area B-BX-BY. RPP-10098, Draft, Volume 2,
Appendix D, CH2M HILL Hanford Group, Inc., Richland, Washington.
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2.0 Geology

The geology of the vadose zone underlying the 241-B Tank Farm forms the framework through
which the contaminants move, and provides the basis with which to interpret and extrapolate the physical
and geochemical properties that control the migration and distribution of contaminants. Of particular
interest are the interrelationships between the coarser and finer-grained facies, and the degree of contrast
in their physical and geochemical properties.

This section presents a brief discussion on the geologic setting of the 241-B Tank Farm followed by
a discussion on the drilling, sampling, and geophysical logging of borehole 299-E33-46 as well as a
description and interpretation of the geologic materials penetrated by this borehole.

2.1 Geologic Setting of the 241-B Tank Farm

The 241-B Tank Farm was constructed in 1943 and 1944 to store high-level radioactive waste
generated by chemical processing of irradiated uranium fuel at the chemical separation plants
(DOE-GJPO 1999a). The tank farm was excavated into the Pleistocene-age Hanford formation and
Holocene eolian deposits that mantle a portion of the northern flank of the Cold Creek flood bar (Wood et
al. 2000). The geology beneath the B Tank Farm has been described in numerous reports (Price and
Fecht 1976; Caggiano and Goodwin 1991; Caggiano 1996; Narbutovskih 1998; DOE-GJPO 1999a;
Wood et al. 2000; and Lindsey et al. 2001). The major stratigraphic units beneath the tank farm include
(in descending order); the Hanford formation, a unit described as Hanford formation/Plio-Pleistocene unit
(?) [H/PPu(?)], and the Columbia River Basalt Group (Figure 2.1). The uppermost 10.7 m (35 ft) of the
Hanford formation was removed during construction of the tank farm and the stockpiled sediments were
later used as backfill, placed around and over the underground storage tanks.

The stratigraphic nomenclature used in this report is summarized in Table 2.1. Stratigraphic
terminology used in this report is consistent with that presented in Wood et al. (2000) and Lindsey et al.
(2001) for the Hanford formation. However, the interpretation of stratigraphic units underlying the
Hanford formation differs for these two reports. Wood et al. (2000) interpret the gravel sequence under a
thick (up to 10 m [33 ft]) Plio-Pleistocene age silt layer (PPlz) as a mainstream alluvial deposits of Plio-
Pleistocene age, while Lindsey et al. (2001) interpret this gravel sequence as older Ringold Formation.
The mafic content in these sandy gravels appears unlike that for the mostly quartzo-feldspathic Ringold
Formation. Furthermore, numerous past studies (Tallman et al 1979; Last et al. 1989; Connelly et al.
1992; Williams et al. 2001) have never identified the Ringold Formation this far north within the 200 East
Area. Therefore, we prefer the interpretation of Wood et al. (2000) that this gravel sequence is part of the
Plio-Pleistocene unit, and thus it is designated as Plio-Pleistocene gravel (PPlg) in this report.
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Figure 2.1. Generalized, Composite Stratigraphy for the Late Cenozoic Sediments Overlying the
Columbia River Basalt Group at the B Tank Farm (Modified After Wood et al. 2000)

Table 2.1. Stratigraphic Terminology Used in this Report for the Vadose Zone Beneath the B Tank
Farm. (2 Pages)

Stratigraphic | Formation | Facies / Subunit Description Genesis
Symbol

Poorly to moderately sorted cobbles, pebbles,
and coarse to medium sand with some silt
Backfill NA Backfill derived from coarse-grained Hanford formation | Anthropogenic
(H1 Unit) excavated around tanks (Price and
Fecht 1976)

Upper sandy gravel to gravelly sand sequence.

Equivalent to the HI unit discussed by Lindsey et

Hanford al. (1994, 2001) the upper gravel sequence

H1 formation Unit H1 discussed by Last et al. (1989) and Lindsey et al.
(1992), and the Qfg documented by Reidel and

Fecht (1994). Excavated out and missing from

most of B Tank Farm.

Cataclysmic Flood
Deposits
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Table 2.1. Stratigraphic Terminology Used in this Report for the Vadose Zone Beneath the B Tank

Farm. (2 Pages)

Stratigraphic
Symbol

Formation

Facies / Subunit

Description

Genesis

H2

H3

Unit H2

Sand sequence consisting predominantly of
sand-dominated facies, with multiple graded beds
of horizontal to tabular cross-bedded sand to
slightly gravelly sand. Graded beds sometimes
capped with thin layers of silty sand to silt.
Equivalent to H2 unit of Wood et al. (2000) and
Lindsey et al. (1994, 2001), the sandy sequence
of Last et al. (1989) and Lindsey et al. (1992),
and to Qfs documented by Reidel and Fecht
(1994).

Unit H3

Lower gravelly sand to slightly gravelly sand
sequence. Equivalent to the H3 unit of Lindsey et
al. (1994, 2001) lower gravel sequence discussed
by Last et al. (1989) and Lindsey et al. (1992),
and the Qfg documented by Reidel and Fecht
(1994).

H{f/PPu and/or
PPIz

H{f/PPu and/or
PPIg

Hanford
Formation/
Plio-
Pleistocene
Unit (?)

Silt-Dominated
Facies

Silty sequence consisting of interstratified well
sorted calcareous silt and fine sand. Equivalent
to the Silt facies of the Hanford Formation/Plio-
Pleistocene Unit(?) of Wood et al. (2000).
Perhaps equivalent to the “early Palouse soil”
originally described by Tallman et al. (1979) and
DOE (1988). Also equivalent to the upper
portion of the Hanford/Plio-
Pleistocene/Ringold(?) of Lindsey et al. (2001)

Fluvial overbank
and/or eolian
deposits (with some
weakly developed
paleosols)

Sandy Gravel to
Gravelly Sand
Dominated Facies

Sandy gravel to gravelly sand sequence
consisting predominantly of unconsolidated
basaltic sands and gravels. Actual origin of this
unit is still uncertain. Without intervening silt
facies (PPlz subunit) this unit cannot be
differentiated from the Hanford formation H3
unit (Wood et al. 2000). Lindsey et al. (2001)
suggested this unit may be part of the Ringold
Formation.

Plio-Pleistocene
age mainstream
alluvium (Wood et
al. 2000) or
possibly Ringold
Formation (Lindsey
et al. 2001)

2.2

Drilling and Sampling of Borehole 299-E33-46 (C3360)

Borehole 299-E33-46 was drilled using the cable-tool technique between May 8 and June 26, 2001.
The borehole is located approximately 5 m (15 ft) from the northeast edge of single-shell tank 241-B-110
(Figure 2.2), which was first recognized as a suspected leaker in 1973 later becoming an assumed leaker
in 1984 (DOE-GJPO 1999b). Total depth of the borehole was 80.6 m (264.4 ft) below ground surface
(bgs); the groundwater table was encountered at 78.0 m (255.8 ft) bgs. The borehole was later completed
as a well for the installation of down-hole hydrologic sensors (Reynolds 2001). The surveyed well
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elevation is 200.3 m (657.3 ft) above mean sea level; geographic coordinates are N13728.365 and
E573792.553.

During drilling, a total of 33 two-ft long, 4-inch diameter split-spoon core samples were collected
starting at a depth of about 3 m (10 ft) bgs (Table 2.2, Figure 2.3). Four 0.5 ft long stainless-steel core
liners were used in each 2-ft split spoon. A geologic log was compiled in the field by a Duratek Federal
Services, Inc. (DFS) subcontract geologist (KR Simpson), based on observations made on cuttings
retrieved from the core barrel between core runs as well as the exposed ends of contained split-spoon
samples (Reynolds 2001). Core extraction was performed later in a radiologically controlled PNNL
laboratory between July 10th and 18th, 2001. At this time a second geologic log, which describes the
character of the core interiors, was prepared by a PNNL geologist (BN Bjornstad). Geologic logging
occurred after each core segment was emptied into an open plastic container, followed by photographing
and sub-sampling for physical and chemical characterization. Material from each 0.5 ft liner was placed
into a separate plastic container and after geologic logging, photographing and sub-sampling, the plastic
containers were sealed shut and placed into cold storage. Selected composite grab samples were also
examined in the laboratory.

Geologic description on the opened cores and composite grab samples was performed according to
the procedure outlined in PNNL (1999). Both of the Duratek and PNNL geologic core logs from
borehole 299-E33-46 are presented in Appendix B of Lindsey et al. (2001). A one-page summary log of
borehole 299-E33-46, compiled from the geologic logs, is presented in Figure 2.3. Penetration resistance
(i.e., blowcounts) and percent core recovered from each 2 ft core run are also plotted in Figure 2.3, based
on data presented in Appendix D of Reynolds (2001).

Figure 2.2. Location of Borehole 299-E33-46 Within the B Tank Farm.
Modified after Reynolds (2001).
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Figure 2.3. Summary Geologic Log for Borehole 299-E33-46.

Two sets of temporary casing were used to control the borehole during drilling and sampling
(Reynolds 2001). Surface casing (13 3/8 in. outside diameter [OD]) was set to 37.0 m (121.3 ft) bgs; the
second casing (10 % in OD) was installed to just above total depth (80.5 m [264.2 ft] bgs). Anticipated
perched-water conditions were not encountered atop a fine-grained silt layer at 67 m (220 ft) bgs, thus it
was not necessary to telescope down to a smaller-diameter casing within this fine-grained zone. Eight
vadose zone porewater sensor arrays were installed in the borehole prior to decommissioning and removal
of temporary casing (Reynolds 2001).

Thirty-three split-spoon core samples were collected between 3 and 77 m (10 and 254 ft) bgs - an
average of every 2.3 m (7.5 ft). Grab samples were collected between these core sample intervals to yield
near continuous samples to a depth of 78.3 m (257 ft). The split-spoon samples were taken ahead of the
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casing by driving a split-spoon sampler into the undisturbed formations below the casing. The complete
list of split-spoon cores collected, depth interval, sediment description, and percent core recovery is listed
in Table 2.2. The relative location of each 2-ft split-spoon core is shown graphically in Figure 2.3. Core
recovery was excellent (95-100%) in the finer grained sediments, decreasing significantly in the coarser
materials (Table 2.2, Figure 2.3).

Table 2.2. Splitspoon Samples from 299-E33-46. (2 pages)

Field Sample | Top Depth | Bottom Depth Sampled Sediment Stratigraphic| % Core
No. fty® ™ Interval Description Unit Recovery
Thickness
(fey®
S01052-1 9.5 11.7 2.0 Sandy gravel Backfill 60
S01052-6 19.3 21.6 2.0 Sandy to pebbly Backfill 85
gravel
S01052-10 27.7 30.0 2.0 Sand and cobbles Backfill 75
S01052-16 40.0 42.3 2.0 Sand H2 100
S01052-17 42.3 44.6 2.0 Sand H2 100
S01052-18 44.7 47.0 2.0 Sand H2 100
S01052-20 48.9 51.2 2.0 Coarse sand H2 100
S01052-21 51.3 53.6 2.0 Sand H2 100
S01052-26 59.0 61.3 2.0 Sand H2 100
S01052-31 68.7 71.0 2.0 Sand H2 100
S01052-36 78.2 80.5 2.0 Sand H2 100
S01052-38 81.3 83.6 2.0 Sand H2 100
S01052-42 88.6 90.9 2.0 Sand H2 100
S01052-47 97.9 100.2 2.0 Sand H2 100
S01052-53 109.7 112.0 2.0 Sand H2 100
S01052-57 118.2 120.5 2.0 Sand H2 95
S01052-64 130.1 132.4 2.0 Sand, salt and H2 100
pepper

S01052-69 138.3 140.6 2.0 Sand H2 100
S01052-74 148.4 150.7 2.0 Sand H2 100
S01052-79 158.4 160.7 2.0 Sand H2 100
S01052-82 162.8 165.1 2.0 Sand H2 100
S01052-83 165.1 167.4 2.0 Sand H2 100
S01052-86 169.4 171.7 2.0 Sand H2 100
S01052-90 178.1 180.4 2.0 Sand H3 100
S01052-96 189.1 191.4 2.0 Coarse sand H3 100
S01052-101 199.2 201.5 2.0 Sand H3 100
S01052-105 208.4 210.7 2.0 Sand H3 100
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Table 2.2. Splitspoon Samples from 299-E33-46. (2 pages)

Field Sample | Top Depth | Bottom Depth Sampled Sediment Stratigraphic| % Core

No. fty® ™ Interval Description Unit Recovery

Thickness
(fey®

S01052-109 217.7 220.0 2.0 Sand/silt PPIz 100
S01052-110 220.4 222.7 2.0 Silt/clay PPlz 100
S01052-115 2294 231.7 2.0 Gravel/sand PPIg 75
S01052-120 2394 241.7 2.0 Gravel/sand PPIg 87.5
S01052-123 245.5 246.0 0.5 Gravel PPIg 44
S01052-127 252.4 254.7 2.0 Gravel/sand PPIg 69

Wto convert to meters multiply by 0.3048
H2 = Hanford H2 Sand Sequence (see Table 2.1)
H3 = Hanford H3 Lower Sand Sequence (see Table 2.1)

PPlz = Plio-Pleistocene slit (see Table 2.1)

PPlg = Plio-Pleistocene gravel (see Table 2.1)

Table 2.3. Composite Grab and Split-Spoon Shoe Samples from 299-E33-46. (6 pages)

Sample Top Depth | Bottom Sampled Sample Type Sample Stratigraphic
No. f® Depth Interval Description Unit
fty® Thickness
(ft)®
S01052-03 11.80 14.07 2.27 Composite Grab * *
S01052-04 14.07 15.90 1.83 Composite Grab * *
S01052-05 15.90 18.00 2.10 Composite Grab * *
S01052-06 21.37 21.60 0.23 Splitspoon Shoe * *
S01052-07 21.60 24.10 2.50 Composite Grab * *
S01052-08 24.10 26.00 1.90 Composite Grab * *
S01052-09 26.00 27.70 1.70 Composite Grab * *
S01052-10 29.67 30.00 0.33 Splitspoon Shoe * *
S01052-11 30.00 31.70 1.70 Composite Grab * *
S01052-12 31.70 33.30 1.60 Composite Grab * *
S01052-13 33.30 35.40 2.10 Composite Grab * *
S01052-14 35.40 37.80 2.40 Composite Grab * *
S01052-15 37.80 40.00 2.20 Composite Grab * *
S01052-16 41.97 42.30 0.33 Splitspoon Shoe * *
S01052-17 44.27 44.60 0.33 Splitspoon Shoe * *
S01052-18 46.67 47.00 0.33 Splitspoon Shoe * *
S01052-19 47.00 48.90 1.90 Composite Grab * *
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Table 2.3. Composite Grab and Split-Spoon Shoe Samples from 299-E33-46. (6 pages)

Sample Top Depth | Bottom Sampled Sample Type Sample Stratigraphic
No. fO® Depth Interval Description Unit
™ Thickness
"
S01052-20 50.87 51.20 0.33 Splitspoon Shoe * *
S01052-21 53.27 53.60 0.33 Splitspoon Shoe * *
S01052-22 53.60 55.60 2.00 Composite Grab * *
S01052-23 53.60 55.60 2.00 Composite Grab * *
S01052-24 55.60 57.80 2.20 Composite Grab * *
S01052-25 57.80 59.00 1.20 Composite Grab * *
S01052-26 60.97 61.30 0.33 Splitspoon Shoe * *
S01052-27 61.30 62.90 1.60 Composite Grab * *
S01052-28 62.90 64.90 2.00 Composite Grab * *
S01052-29 64.90 67.20 2.30 Composite Grab * *
S01052-30 67.20 68.70 1.50 Composite Grab * *
S01052-31 70.70 71.00 0.30 Splitspoon Shoe * *
S01052-32 71.00 72.70 1.70 Composite Grab * *
S01052-33 72.70 74.30 1.60 Composite Grab * *
S01052-34 74.30 76.50 2.20 Composite Grab Medium sand H2
S01052-35 76.50 78.20 1.70 Composite Grab * *
S01052-36 80.50 80.50 0.00 Splitspoon Shoe * *
S01052-37 80.50 81.30 0.80 Composite Grab * *
S01052-38 83.30 83.60 0.30 Splitspoon Shoe Medium sand H2
S01052-39 83.60 85.50 1.90 Composite Grab Medium sand H2
S01052-40 85.50 87.10 1.60 Composite Grab * *
S01052-41 87.10 88.60 1.50 Composite Grab * *
S01052-42 90.87 90.90 0.03 Splitspoon Shoe * *
S01052-43 90.90 92.00 1.10 Composite Grab Slightly H2
pebbly coarse
sand
S01052-44 92.00 94.30 2.30 Composite Grab Medium sand H2
S01052-45 94.30 96.00 1.70 Composite Grab Medium sand H2
S01052-46 96.00 97.90 1.90 Composite Grab * *
S01052-47 99.87 100.20 0.33 Splitspoon Shoe Medium to H2
coarse sand
S01052-48 100.20 102.90 2.70 Composite Grab Coarse sand H2
S01052-49 102.90 104.80 1.90 Composite Grab Medium to H2

coarse sand
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Table 2.3. Composite Grab and Split-Spoon Shoe Samples from 299-E33-46. (6 pages)

Sample Top Depth | Bottom Sampled Sample Type Sample Stratigraphic
No. fO® Depth Interval Description Unit
™ Thickness
fty®

S01052-50 104.80 106.60 1.80 Composite Grab Medium to H2
coarse sand

S01052-51 106.60 108.30 1.70 Composite Grab Medium to H2
coarse sand

S01052-52 108.30 109.70 1.40 Composite Grab * *

S01052-53 111.67 112.00 0.33 Splitspoon Shoe * *

S01052-54 112.00 114.00 2.00 Composite Grab Coarse sand H2

S01052-55 114.00 115.80 1.80 Composite Grab Medium to H2
coarse sand

S01052-56 115.80 118.20 2.40 Composite Grab Medium to H2
coarse sand

S01052-58 120.70 122.30 1.60 Composite Grab Medium to H2
coarse sand

S01052-59 122.70 124.30 1.60 Composite Grab Medium sand H2

S01052-60 122.70 124.30 1.60 Composite Grab Medium sand H2

S01052-61 124.30 125.80 1.50 Composite Grab Medium to H2
coarse sand

S01052-62 125.80 127.70 1.90 Composite Grab Medium to H2
coarse sand

S01052-63 127.70 130.10 2.40 Composite Grab Medium to H2
coarse sand
with silt lens

S01052-64 132.10 132.40 0.30 Splitspoon Shoe * *

S01052-65 132.40 133.30 0.90 Composite Grab Coarse sand H2

S01052-66 133.30 135.10 1.80 Composite Grab Coarse sand H2

S01052-67 135.10 136.90 1.80 Composite Grab Medium to H2
coarse sand

S01052-68 136.90 138.30 1.40 Composite Grab Coarse sand H2

S01052-69 140.30 140.60 0.30 Splitspoon Shoe

S01052-70 140.60 142.20 1.60 Composite Grab Medium to H2
coarse sand

S01052-71 142.20 144.50 2.30 Composite Grab Medium to H2
coarse sand

S01052-72 144.50 146.50 2.00 Composite Grab Medium to H2

coarse sand
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Table 2.3. Composite Grab and Split-Spoon Shoe Samples from 299-E33-46. (6 pages)

Sample Top Depth | Bottom Sampled Sample Type Sample Stratigraphic
No. fty® Depth Interval Description Unit
™ Thickness
(ft) @

S01052-73 146.50 148.40 1.90 Composite Grab Medium to H2
coarse sand

S01052-74 150.40 150.70 0.30 Splitspoon Shoe * *

S01052-75 150.70 152.20 1.50 Composite Grab Medium to H2
coarse sand

S01052-76 152.20 154.40 2.20 Composite Grab Medium to H2
coarse sand

S01052-77 154.40 156.60 2.20 Composite Grab Medium to H2
coarse sand

S01052-78 156.60 158.60 2.00 Composite Grab Medium to H2
coarse sand

S01052-79 160.40 160.70 0.30 Composite Grab Medium to H2
coarse sand

S01052-80 160.70 162.80 2.10 Composite Grab Medium sand H2

S01052-81 160.70 162.80 2.10 Composite Grab Medium sand H2

S01052-82 164.80 165.10 0.30 Composite Grab Medium to H2
coarse sand

S01052-83 167.10 167.40 0.30 Composite Grab Medium to H2
coarse sand

S01052-84 167.50 169.40 1.90 Composite Grab * *

S01052-85 168.10 168.40 0.30 Composite Grab Fine sandy H2

silt

S01052-86 171.40 171.70 0.30 Composite Grab Coarse sand H2

S01052-87 171.70 174.10 2.40 Composite Grab Medium to H2
coarse sand

S01052-88 174.10 176.10 2.00 Composite Grab Medium to H2
coarse sand

S01052-89 176.10 178.10 2.00 Composite Grab Pebbly sand H3

S01052-90 180.10 180.40 0.30 Composite Grab Pebbly sand H3

S01052-91 180.40 183.10 2.70 Composite Grab Fine to H3

medium sand
with silty fine
sand lens

S01052-92 183.10 184.30 1.20 Composite Grab Pebbly sand H3

S01052-93 184.30 185.90 1.60 Composite Grab Pebbly sand H3

S01052-94 185.90 187.80 1.90 Composite Grab Medium sand H3
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Table 2.3. Composite Grab and Split-Spoon Shoe Samples from 299-E33-46. (6 pages)

Sample Top Depth | Bottom Sampled Sample Type Sample Stratigraphic
No. fO® Depth Interval Description Unit
(f® Thickness
(ft) @
S01052-95 187.80 189.10 1.30 Composite Grab Medium sand H3
S01052-97 191.40 193.50 2.10 Composite Grab * *
S01052-98 193.50 195.10 1.60 Composite Grab * *
S01052-99 195.10 197.50 2.40 Composite Grab * *
S01052- 197.50 199.20 1.70 Composite Grab * *
100
S01052- 201.50 203.30 1.80 Composite Grab * *
102
S01052- 203.30 205.80 2.50 Composite Grab * *
103
S01052- 201.50 203.30 1.80 Composite Grab * *
104
S01052- 210.20 210.70 0.50 Composite Grab * *
105
S01052- 210.70 213.70 3.00 Composite Grab * *
106
S01052- 213.70 215.70 2.00 Composite Grab * *
107
S01052- 215.70 217.70 2.00 Composite Grab Fine sand PPlz
108
S01052- 219.90 220.00 0.10 Composite Grab Fine sand PPlz
109 over silt
S01052- 222.40 222.70 0.30 Composite Grab Fine sandy PPlz
110 silt
S01052- 222.70 224.30 1.60 Composite Grab Silty fine PPlz
111 sand
S01052- 222.70 224.30 1.60 Composite Grab Silty fine PPlz
112 sand
S01052- 224.30 227.50 3.20 Composite Grab * *
113
S01052- 227.70 229.20 1.50 Composite Grab Sandy gravel PPlg
114
S01052- 231.70 233.70 2.00 Composite Grab * *
116
S01052- 233.70 235.70 2.00 Composite Grab * *
117
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Table 2.3. Composite Grab and Split-Spoon Shoe Samples from 299-E33-46. (6 pages)

Sample Top Depth | Bottom Sampled Sample Type Sample Stratigraphic

No. fO® Depth Interval Description Unit
™ Thickness
(ft) @

S01052- 235.70 238.00 2.30 Composite Grab * *
118

S01052- 238.00 239.40 1.40 Composite Grab * *
119

S01052- 241.70 243.80 2.10 Composite Grab * *
121

S01052- 243.80 245.20 1.40 Composite Grab * *
122

S01052- 246.00 247.50 1.50 Composite Grab * *
124

S01052- 247.50 249.50 2.00 Composite Grab * *
125

S01052- 249.50 252.40 2.90 Composite Grab * *
126

S01052- 254.70 255.10 0.40 Composite Grab * *
128

S01052- 254.70 255.10 0.40 Composite Grab * *
129

Wto convert to meters multiply by 0.3048

H2 = Hanford H2 Sand Sequence (see Table 2.1)

H3 = Hanford H3 Lower Sand Sequence (see Table 2.1)
PPlz = Plio-Pleistocene slit (see Table 2.1)

PPlg = Plio-Pleistocene gravel (see Table 2.1)

* Not examined

Each of the 33 split-spoon core runs were disassembled in the field and the set of four, half-foot
sample liners recovered. The lower most sample liner was labeled "A" and the upper most liner labeled
"D". Each liner was individually capped and packaged for transport to the PNNL's radioactive sample
handling laboratory at the 3720 Building, located within the 300 Area. All split-spoon liners and
composite grab samples were surrounded by blue ice to maintain sample temperature between 2 to 4° C
during transport. The shipping containers were sealed with custody tape and maintained under chain-of-
custody protocols. Upon arriving at the 3720 Building, samples were placed into cold storage until such a
time that liners could be opened and sub-sampled.

2.3  Geophysical Logging
Geophysical logging (total gamma, spectral gamma, and neutron moisture) in borehole 299-E33-46
was performed twice by Duratek Federal Services, Inc., once before downsizing to the smaller-diameter

casing to a depth of 37.0 m (121.3 ft) bgs, and again upon reaching total depth (80.6 m [264.4 ft] bgs).
Detailed descriptions of the logging tools and data analysis can be found in reports by Reynolds (2001)
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and Lindsey et al. (2001). Composites of the neutron-moisture and total gamma logs are illustrated in
Figure 2.3.

The neutron-moisture log is generally used to depict the relative moisture content within a 20 to
30 cm (8 to 12 in) radius around the borehole. However, the neutron-moisture logging tool was not
calibrated for the casing conditions, therefore absolute moisture values cannot be obtained directly from
the neutron-moisture log.

Two different high-purity germanium (HPGe) spectral-gamma logging events were conducted to
identify the specific gamma-emitting radionuclides in the formation surrounding the borehole
(Reynolds 2001). A different logging event was conducted at the end of each drilling phase, through a
single thickness of casing (with the exception of short overlaps between successive events) (Lindsey et.
al. 2001).

A sharp prolonged increase in total gamma activity between 14 to 26 m (45 to 85 ft) bgs (Figure 2.3)
is apparently associated with a zone of strontium-90 contamination in the subsurface (DOE-GJPO 1999b).
The silt-dominated unit between 67 to 69.5 m (220 to 228 ft) bgs is also well defined on the total gamma
log, coincident with a high-moisture zone on the neutron-moisture log (Figure 2.3).

2.4 Sample Handling

Once received by the laboratory the sample liners and grab samples were stored in a refrigerator to
maintain the sample temperatures between 2 and 4° C. All the split-spoon sample liners were opened,
sub-sampled, and geologically described. In addition, 54 out of a total of 120 composite grab samples
listed in Table 2.3 were opened, sub-sampled, logged, and photographed.

Processing of the split-spoon cores (Table 2.2) was as follows. Each split-spoon sampler was taken
to a fume hood, unpackaged and the lower two (i.e. deeper two designated A and B) of the four liners
were opened. A small portion of the sample (approximately 1 cm) was scraped away and a sandwich of
three filter papers (for matric potential measurements) was inserted into the sample. The scraped
materials were then placed back over the filter paper sandwich such that the filter paper sandwich was
surrounded by, and in intimate contact with, the soil matrix. The end cap was replaced, sealed with tape,
and the sample returned to the refrigerated storage.

About three weeks later, all split-spoon liners were sequentially taken to a fume hood for sample
processing. Initially, the liner end caps were removed and an estimate of the approximate amount of
sample material retained in the liner (% recovery) was noted on the geologic log. Then all the material
within a liner was placed in a plastic tray (one plastic tray per liner). Material within the plastic tray was
then sub-sampled for physical and geochemical analysis, photographed, and described geologically.

Sediment within the sample liners was extracted using a hammer to tap on the stainless-steel liner to
get the materials to fall out into the plastic sample tray. Efforts were made to keep the sample materials
as intact as possible. However, the unconsolidated friable nature of these coarse-grained materials
generally made it impossible to preserve the internal sedimentary structures in these materials.
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2.5 Sub-sampling and Geologic Description

Immediately, upon extracting material from the core liner or grab sample container, moisture
samples were collected. An attempt was made to sample the finer grained and/or wetter materials as well
as distinct hydrogeologic units, while at the same time trying to avoid slough and/or other
unrepresentative portions. The remaining portions of the samples were then used for a brief visual
geologic evaluation.

The visual geologic evaluation was conducted in accordance with procedures American Society for
Testing and Materials (ASTM) D2488 (ASTM 1993) and PNL-DO-1 (PNL 1990). Throughout the sub-
sampling and geologic evaluation activities, the laboratory geologist made continual visual observations
regarding the mineralogy, structure, grain-size distribution (and sorting), grain-shape (e.g. roundness),
color, moisture, consolidation, and reaction to dilute hydrochloric acid (HCI) (used to test for the presence
of calcium carbonate). Copies of the geologist’s logs are found in Appendix A. Particular attention was
given to visually estimate the percentage (by weight) of gravel, sand, and mud (silt + clay), and to
visually classify the samples based on the modified Folk (1968) and/or Wentworth (1922) classification
scheme historically used at the Hanford Site. This sediment classification scheme uses a ternary diagram
to categorize the sediment into one of 19 textural classes based on the relative proportions of gravel, sand,
and mud (silt + clay) (Figure 2.4). Geologic logs recording the visual observations made while opening,
sub-sampling and characterizing and these materials, are presented in Lindsey et al. (2001, Appendix B).
Photographs were also taken of each of over 100 core liners after extrusion into their respective plastic
trays. A few of these photographs appear in subsequent sections of this report and most of them are in
Appendix B. A portion of the grab samples (Table 2.3) were also examined and photographed in the
laboratory. These photographs, along with core photos are available online to PNNL staff at
\Wd26776\AGGPublic\B-110 Final Report\E33-46 Photos.
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PEBBLE pEepium 16 -8
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VERY FINE 4-2
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Figure 2.4. Sediment textural classification (modified after Folk 1968 and Wentworth 1922)
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2.6 Geology of Borehole 299-E33-46

Figure 2.3 presents a summary log of borehole 299-E33-46 based on the field geologists logs,
geologic descriptions of the split-spoon and composite grab sample materials, laboratory analyses, and
geophysical logs. Three primary stratigraphic units were encountered by this borehole: 1) backfill
materials, 2) the Hanford formation, and 3) the Plio-Pleistocene unit. A brief description of the sampled
materials from each of these major stratigraphic units is presented below.

2.6.1 Backfill

The backfill extends from the ground surface to a depth of 11.7 m (38.5 ft) where it lies in contact
with the Hanford formation (Figure 2.3). Three split-spoon samples were collected from the backfill.
The backfill material consists of predominantly dark to olive gray, moderately sorted, silty sandy gravel
to gravelly sand, which is unconsolidated and weakly to strongly calcareous. An unusual pink coating
was noted on cobbles recovered from about 6.4 m (21 ft) bgs. The neutron-moisture log shows higher
moisture just below the surface, probably associated with near-surface natural recharge. A greater
penetration resistance (i.e., blowcounts) and poorer core recovery in the backfill are consistent with the
relatively high percentage of gravel compared to the underlying sands of the Hanford formation.

2.6.2 Hanford Formation

Recent geologic reports (Wood et al. 2000, Lindsey et al. 2001), divide cataclysmic flood deposits of
the Hanford formation beneath the 241-B Tank Farm into three informal units (H1, H2, and H3).
However, it appears that the H1 unit was completely removed during excavation in the vicinity of
borehole 299-E33-46, and then later used as backfill around the tanks. Based on the lithologies observed
during drilling and in core samples, the Hanford formation beneath the backfill consists of mostly sand
separated by several distinctly finer (fine sand to silt) strata. A total of three moisture spikes occur within
the Hanford formation associated with these fine-grained intervals and/or other interfaces between strata
with contrasting grain sizes (Figure 2.3).

The sands are associated with moderate to high energy deposition during flooding, while relatively
thin fine sand to silt layers represent remnants of slack-water sedimentation deposited towards the end of
ice-age flood episodes (Baker et al. 1991). According to Lindsey et al. (2001), the H2 unit, which
consists of predominantly sand, occurs to a depth of 56.7 m (186 ft) bgs in 299-E33-46. However, the
uppermost gravelly interval, used to define the boundary between H2 and H3, was observed 3 m (10 ft)
higher in cores to a depth of 54 m (176 ft) bgs. Below this depth lies the H3 unit, a predominantly
coarser-grained gravelly sand sequence that extends to base of the Hanford formation at 65.5 m
(215 ft) bgs.

A significant zone, approximately12 m (40 ft) thick, of radionuclide contamination (strontium-90)
occurs at the top of the Hanford formation starting at the interface with the overlying coarse-grained
backfill (Figure 2.3). The base of the strontium-90 contamination as defined by bremmstrahlung radiation
in the spectral gamma log is well defined and occurs just above a 0.5 m (1.5 ft) thick very fine sand layer,
which may have acted as a localized perched zone or capillary boundary.
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2.6.2.1 Hanford Formation H2 Unit

The Hanford formation H2 unit is present between 12 to 54 m (38.5 to 176 ft) bgs. A total of 20 2-ft
split-spoon cores were collected from this unit, which consists of mostly olive gray, moderately to well
sorted, fine- to coarse-grained sand beds. These beds show occasional weak horizontal laminations and
are generally noncalcareous to weakly calcareous. Within this sequence also lies several feet of loose,
gravelly sand around 26 m (86 ft) bgs. Dispersed within the Hanford formation H2 unit are four separate,
relatively thin (< 0.6 m [2 ft]), olive brown to grayish brown, compact, well-sorted fine sand to silt beds.
These occur at depths of about 21.2, 30.0, 37.5, and 51.2 m (69.7, 98.5, 123.0, and 168.0 ft) bgs
(Figure 2.3).

The most common sediment type within the H2 unit, a medium-to coarse grained sand, is
represented in Figure 2.5. The term “salt and pepper” is often used to describe sands of the H2 unit on
geologic logs due to the roughly equal amounts of dark- (basaltic) and light-colored (quartz and feldspar)
grains. While this unit appears to be unconsolidated the penetration resistance (i.e., blow counts)
increases slightly for the middle portion between 40 to 47 m (130 to 155 ft) bgs (Figure 2.3), which might
reflect a greater degree of compaction within this interval. Core recovery was consistently 100% within
the H2 unit.

Figure 2.5. Medium to coarse sand recovered from the Hanford Formation H2 Unit in
Borehole 299-E33-46.
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2.6.3 Hanford Formation H3 Unit

The top of the Hanford formation H3 unit is defined by a transition from predominantly sand to
slightly gravelly sand at 53.6 m (176 ft) bgs (Figure 2.3). The Hanford formation H3 unit is about 11.9 m
(39 ft) thick, the base of which is defined by the top of the Plio-Pleistocene unit silty facies (PP1z) at
65.5 m (215 ft) bgs. A total of four, two-foot split-spoon cores were collected from the Hanford
formation H3 unit. Like the H2 unit, core recovery within the H3 unit was consistently 100%. This
matrix-supported, gravelly sand sequence consists predominantly of gray to olive gray, “salt and pepper”,
unconsolidated, moderately to well sorted, medium- to coarse-grained sand with pebbles up to 3 cm in
intermediate diameter (Figure 2.6). The unit is unconsolidated and non-calcareous to weakly calcareous.
The H3 unit in 299-E33-46 grades downward into medium to coarse sand with depth, identical to sands
described for the overlying H2 unit (see section 2.6.2). Paleomagnetic results from a nearby borehole
(299-E33-335) suggest ice-age flood deposits at roughly the same stratigraphic position as the H3 unit
were deposited during the early Pleistocene Epoch, during very old flood events that occurred at least
780,000 years ago and perhaps as early as 2 million years ago (Bjornstad et al. 2001).

Figure 2.6. Gravelly sand recovered from the Hanford formation H3 Unit in borehole 299-E33-46.
2.6.4 Plio-Pleistocene Unit

The exact origin of the sedimentary deposits underlying the Hanford formation H3 unit is uncertain
and still open to interpretation (Table 2.1). Recent reports have designated deposits beneath the Hanford
formation H3 unit as the Hf/Ppu(?) (Wood et al. 2000) and Hanford/Plio-Pleistocene/Ringold(?) unit
(Lindsey et al. 2001). Wood et al. (2000) recognized two facies of the Hf/PPu(?) beneath the 241-B, BX,
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and BY Tank Farms; a fine-grained eolian/overbank silt (silt facies), up to 10 m (33 ft) thick, and a sandy
gravel to gravelly sand facies. The thick silt-rich interval is believed to be a pre-ice-age flood deposit,
since silty layers associated with ice-age flood deposits of the Hanford formation in this area are generally
much thinner (few centimeters or less) (Wood et al. 2000). The texture, structure, and color of the thick
silt layer are all identical to that of the early "Palouse" soil (Tallman et. al., 1979; DOE 1988), more
recently referred to as the PPlz or upper Plio-Pleistocene unit, which is widely distributed beneath the 200
West Area (Wood et al. 2000, Serne et al. 2002a).

Where the PPz unit is absent beneath the B-BX-BY Tank Farms, the gravel sequence below the silt
unit is indistinguishable from similar-appearing facies of the Hanford formation H3 unit, which overlies
the PPlz unit (Wood et al. 2000). In fact, prior to the discovery of the thick silt layer, reported in Wood
et al. (2000), gravels overlying basalt bedrock were always included in with the Hanford formation
(Tallman et al. 1979; Last et al. 1989; Connelly et al. 1992; Lindsey et al. 1992). If the thick silt layer
predates the Hanford formation, however, then the underlying gravels must also predate the Hanford
formation. Thus, the gravel sequence beneath the silt layer must belong to either a mainstream alluvial
facies of the Plio-Pleistocene unit or the Ringold Formation.

Lindsey et al. (2001) assigned the gravel sequence underlying the PPlz unit to the Ringold Formation
based on:

e Iron oxide stains on clasts

e Brown, gray and olive colors

e Abundance of basalt clasts, but with numerous other lithologies
e Sand matrix ranging from basalt to quartz rich

e Reports of “hard” drilling on some borehole logs

However, none of the characteristics above are diagnostic of the Ringold Formation, exclusively, and
in certain cases could be used to describe other stratigraphic units, including the Plio-Pleistocene alluvium
and flood gravels. Lindsey et al. (2001) argued against a Plio-Pleistocene age for this gravel sequence,
since Plio-Pleistocene-age gravels (informally named pre-Missoula gravels by PSPL [1982]) have
previously been reported as “bleached” on the Hanford Site (Lindsey et al. 1994). However, unbleached
alluvial gravels of Plio-Pleistocene age are reported for the 200 East Area (Williams et al. 2000) as well
as south of the Hanford Site at Yakima Bluffs (Lindsey et al. 1994). Furthermore, gravelly deposits
recovered from beneath the PPz unit in 299-E33-46 did not display all the characteristics listed above.
For example, iron oxide stains on clasts were not observed on either of the geologic logs prepared for
borehole 299-E33-46 and the mafic content in these sandy gravels appears unlike that for the mostly
quartzo-feldspathic Ringold Formation. Furthermore, this interval, described as “hard” to drill on the
field-geologist’s log, not because it consists of cemented Ringold Formation, but because drillers were
trying to recover intact split-spoon cores, which is a very difficult thing to do in any clast-supported
gravel unit. Finally, past studies (Tallman et al.1979; Last et al. 1989; Lindsey et al. 1992; Connelly et al.
1992; Williams et al. 2001) have all shown the limit of the Ringold Formation as being much farther
south than the B-BX-BY Tank Farms within the 200 East Area.

2.18



In summary, we believe insufficient evidence exists at this time to establish the presence of the
Ringold Formation beneath B-BX-BY Tank Farms. Instead, we favor an interpretation that the gravel
sequence beneath the PPz unit belongs to a mainstream alluvial facies of the Plio-Pleistocene unit as
previously defined by Wood et al. (2000). Thus, we designate this gravel-dominated facies as PPlg in this
report (Table 2.1).

2.6.4.1 Silt-Dominated Facies (PPlz)

A fine-grained PPlz unit, 3.9 m (12.7 ft) thick, underlies the basalt-rich sands of the Hanford
formation in borehole 299-E33-46 between 65.5 m (215 ft) and 69.4 m (227.7 ft) bgs. This unit can be
subdivided into two facies types in borehole 299-E33-46. The upper part of the PPlz unit consists of a
pale olive, loose, laminated, very well sorted, calcareous, fine- to medium-grained, quartzo-feldspathic
sand (Figure 2.7). The lower part of the PPlz unit consists of a grayish brown, laminated to massive,
compacted and very well sorted, moderately calcareous, silt to silty fine sand. One split-spoon core was
collected from each of these facies types. The upper facies type, which begins at 65.5 m (215 ft) bgs was
not recognized by the geologist in the field or by Lindsey et al. (2001), who picked the base of the
Hanford formation 1.5 m (5 ft) deeper at 67 m (220 ft) at a sharp increase in the total gamma log.
However, a distinct lithologic contrast exists between Hanford formation sands (above) and Plio-
Pleistocene unit silt (below) in grab sample #108 (215.7 to 217.7 ft depth, Table 2.3) and the split-spoon
core from the 217.7 to 220 ft depth. The characteristics of the sediment from this unit, including its
relatively high calcium carbonate content, uniform texture, and predominantly quartzo-feldspathic
mineralogy, suggest it is lithologically different from the Hanford formation. Thus, this subunit is
interpreted as a slightly coarser-grained overbank and/or eolian facies of the Plio-Pleistocene unit.

Relatively high neutron moisture and gamma activity on geophysical logs (Figure 2.3), in addition to
several core and grab samples corroborate that the lower part of the PPlz unit in this borehole is fine-
grained (mostly silt). The contact between the silt and overlying fine sand exists within the 219.7 to
220.0 ft grab sample (#109, Table 2.3). The lower portion of the Plio-Pleistocene unit has characteristics
similar to the PP1z unit which overlies an extensive Plio-Pleistocene calcic paleosol sequence (PPlc unit)
beneath 200 West Area (Lindsey et al. 2000; Serne et al. 2002a).
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Figure 2.7. Calcareous, quartzo-feldspathic fine sand recovered from the upper portion of the PPlz
unit in borehole 299-E33-46.

Figure 2.8. Well-laminated silt to silty fine sand recovered from the lower portion of the PPlz unit
in borehole 299-E33-46.
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2.6.4.2 Sandy Gravel to Gravelly Sand Dominated Facies (PPIg)

A sequence of sandy gravel to gravelly sand was encountered starting at a depth of 69.4 m
(227.7 ft) bgs. Four split-spoon cores were collected within this unit. It consists of mostly olive gray,
loose, clast-supported, moderately to poorly sorted mixtures of gravel and sand (Figure 2.9). This unit
contains a moderate amount (approximately30-50%) of basalt and is noncalcareous. Poor core recovery
(Figure 2.3) and considerable pulverization of the sample resulted from trying to drive a narrow-diameter
(4 inch ID) split spoon through the clast-supported pebbles and cobbles. Surfaces of individual gravel
clasts are relatively unweathered and lack surface staining.

Figure 2.9.. Sandy gravel recovered from the PPlg subunit in borehole 299-E33-46 .
2.7 Discussion on Increased-Moisture Zones

Absolute moisture values (in wt%) are available for a number of core and composite-grab samples
analyzed in the laboratory; these data appear in Figure 2.3. There is general agreement between the
neutron moisture log and moisture measured in the laboratory. In other words, spikes on the neutron
moisture log coincide with zones of increased moisture measured in the laboratory. Increased moisture
appears to be associated with the capillary boundary between sudden, large contrasts in grain size.
Commonly, a lower-permeability fine-grained silty layer may be present along the boundary, but is not
required for a high-moisture zone to develop. High-moisture zones may also develop along sharp
lithologic boundaries where no silt is present.

Several notable increases in moisture content within the vadose zone occur in 299-E33-46. Only
fine-grained beds about > 0.3 ft thick show up as elevated-moisture zones on the neutron-moisture log
and laboratory analysis (Table 2.4). Starting from the surface, a zone of increased moisture appears to
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conform with a 0.5 m (1.5 ft) thick layer of fine sand sandwiched between layers of coarse sand at 25.6 to
26.1 m (84.0-85.5 ft) bgs (Table 2.4). A similar spike in neutron-moisture logs occurs in several nearby
vadose zone boreholes (20-10-02, 20-07-11, and 20-08-07).

Another high-moisture zone is associated with a thin 9.1 cm (3.6 inch) silt layer at 51.2 to 51.3 m
(168.1 to 168.4 ft) bgs; a core sample obtained from this zone yielded almost 20 wt% water in the
laboratory. A zone of increased moisture occurs at about the same depth in two nearby coreholes
(299-E33-45 and -338). A third increase in moisture lies near a sand-gravelly sand interface, perhaps
associated with some fine and organic(?)-rich layers (between 56.4 to 57.9 m [185 to 190 ft] bgs). A final
sharp increase in neutron moisture occurs at a depth between 67.1 to 69.5 m (220-228 ft) bgs associated
with the silt-dominated facies (PPLz) of the Plio-Pleistocene unit.

A few other fine grained beds are present (i.e., 21.2, 30.0 and 39.3 m [69.7, 98.5, and 129 ft]
depths), however these do not show up as increased-moisture zones on either the neutron-moisture log or
in the laboratory analyses, probably because they are thin (0.5 to 1.0 cm [0.2 to 0.4 inch]). A critical
thickness of at least 9 cm (3.5 inch) appears to be required for an elevated-moisture zone to appear on the
neutron-moisture log for this borehole. These thin fine-grained beds also probably escaped sub-sampling
for moisture in the laboratory, as suggested by Table 2.4.
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2.8 Historic Groundwater Levels

Wood et al. (2000) reported that the discharge of large volumes of waste water in the early 1950s,
raised the water table in the vicinity of the B Tank Farm to over 4.9 m (16 ft) above pre-Hanford
conditions. They indicated that the groundwater reached a maximum elevation of approximate 124 m
(407 ft) mean sea level in the 1967 to 1968 time frame, with a secondary maximum, just below this in the
1986 to 1989 time frame. Water levels have declined approximately 2.1 to 2.4 m (7 to 8 ft) since 1989 at
a rate of approximately 20 cm/yr (0.7 ft/yr).

Given a surface elevation about 200 m (657.3 ft) mean sea level, the maximum water table is
estimated to have reached a depth of about 76.2 m (250 ft) bgs. The geologists logs made during the
drilling of 299-E33-46 indicate that the groundwater table was encountered at a depth of 77.9 m
(255.8 ft) bgs. This suggests that the groundwater level has dropped almost 2 m (6 ft) in the vicinity of
borehole 299-E33-46 since the late 1980s.
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3.0 Geochemical Method and Materials

This chapter discusses the methods and philosophy used to determine which samples would be
characterized and parameters that would be measured.

3.1 Sample Inventory

Samples were identified using a project-specific prefix, in this case S01052 followed by a specific
sample identification suffix such as -01, for each split spoon. As noted in Section 2.0, the cores contained
four sleeves identified by the letters A, B, C, and D, where the A sleeve was always in the position closest
to the drive shoe (deepest in the formation at the time of sampling).

3.2 Tiered Approach

During the investigations at SX WMA, significant changes in sediment type and contaminant
concentrations were noted within a distance of a few inches within a given sleeve. It was concluded that a
more methodical scoping approach would be necessary to provide the technical justification for selecting
samples for detailed characterization as defined in the data quality objectives process. Subsequently, a
tiered method was developed that considered depth, geology (e.g., lithology, grain-size composition,
carbonate content, etc.), individual sleeve contaminant concentration (e.g., radionuclides, nitrate, etc.),
moisture content, and overall sample quality. Inexpensive analyses and certain key parameters (i.e.,
moisture content, gamma energy analysis) were performed on sediment from each sleeve.

The objective of the tier 1 characterization was to quantify the extent of penetration of mobile
contaminants into the vadose zone sediment. We analyzed only the sediment from the A sleeve for most
constituents except moisture and gamma energy. At borehole 299-E33-46 we did not notice measurable
or significant drag-down effects for contaminants perhaps because the sediment was not highly
contaminated with nuclides such as cesium-137 that are highly associated with fine-grained particles.
Because drag down is dominated by highly contaminated sediment particles, the contaminants in this
borehole had less chance of concentrating on particles.

Immediately following the geologic examination, the sleeve contents were sub-sampled for moisture
content, gamma-emission radiocounting (for these samples, effectively natural potassium-40,
uranium-238, and natural thorium-232 were found; although the strontium-90 bremmstrahlung emissions
were evident over the depth interval (14 to 26 m [45 to 85 ft] bgs), one-to-one water extracts (which
provide soil pH, electrical conductivity, cation, and anion data), total carbon and inorganic carbon
content, and 8 M nitric acid extracts (which provide a measure of the total leachable sediment content of
contaminants). The remaining sediment from each sleeve was then sealed and placed in cold storage.
Later, additional aliquots of selected sleeves or grab samples were removed to measure particle size
distribution and mineralogy and to squeeze porewater.

3.3 Materials and Methods

During sub-sampling of the selected core liner and grab samples, every effort was made to minimize
moisture loss and prevent cross contamination between samples. Depending on the sample matrix, very
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coarse pebble and larger material (>32 mm [1.26 inch]) was avoided during sub-sampling. Larger
substrate was excluded to provide moisture contents representative of counting and 1:1 sediment-to-water
extract samples. Results from sub-sample measurements should then take into consideration a possible
bias toward higher concentrations for some analytes that would be considered associated with smaller
sized sediment fractions. The sediment in the Plio-Pleistocene mud facies contained no large pebbles or
cobbles.

Procedures ASTM D2488-93 (ASTM1993) and PNL-MA-567-DO-1 (PNL 1990a) were followed
for visual descriptions and geologic description of all split-spoon and grab samples. The sediment
classification scheme used for geologic identification of the sediment types is based on the modified
Folk/Wentworth classification scheme described earlier (see Figure 2.4). However, the mineralogic and
geochemical characterization relied on further separation of the mud into discrete silt and clay sizes.

At 299-E33-46 borehole, one groundwater sample was taken during the drilling process. This water
sample along with the cores and grab samples and ultracentrifuged porewaters (from the sediments)
constitute the scope of our characterization activity.

3.3.1 Moisture Content

Gravimetric water contents of the sediment samples from each sleeve and selected grab samples
were determined using PNNL procedure PNL-MA-567-DO-1 (PNL 1990). This procedure is based on
the ASTM procedure Test Method for Laboratory Determination of Water (Moisture) Content of Soil and
Rock (ASTM D2216-98; ASTM 1998). One representative sub-sample of at least 15 to 70 grams was
taken from each sleeve and selected grab samples. Sediment samples were placed in tared containers,
weighed, and dried in an oven at 105°C until constant weight was achieved, which took at least 24 hours.
The containers then were removed from the oven, sealed, cooled, and weighed. At least two weighings,
after 24-hour heatings, were performed to ensure that all moisture was removed. All weighings were
performed using a calibrated balance. A calibrated weight set was used to verify balance performance
before weighing samples. The gravimetric water content was computed as percentage change in soil
weight before and after oven drying.

3.3.2 1:1 Sediment-to-Water Extract

The water-soluble inorganic constituents were determined using a 1:1 sediment-to-deionized-water
extract method. This method was chosen because most of the sediment was too dry to easily extract
vadose zone porewater. The extracts were prepared by adding an exact weight of deionized water to
approximately 60 to 80 grams of sediment sub-sampled from each sleeve and selected grab samples. The
weight of deionized water needed was calculated based on the weight of the field-moist samples and their
previously determined moisture contents. The sum of the existing moisture (porewater) and the deionized
water was fixed at the mass of the dry sediment. The appropriate amount of deionized water was added to
screw cap jars containing the sediment samples. The jars were sealed and briefly shaken by hand, then
placed on a mechanical orbital shaker for 1 hour. The samples were allowed to settle until the supernatant
liquid was fairly clear. The supernatant was carefully decanted and separated into unfiltered aliquots for
conductivity and pH determinations, and filtered aliquots (passed through 0.45 wm membranes) for anion,
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cation, carbon, and radionuclide analyses. More details can be found in Rhoades (1996) within Methods
of Soils Analysis Part 3 (ASA 1996).

3.3.2.1 pH and Conductivity

Two approximately 3-mm aliquots of the unfiltered 1:1 sediment-to-water extract supernatant were
used for pH and conductivity measurements. The pHs for the extracts were measured with a solid-state
pH electrode and a pH meter calibrated with buffers 4, 7, and 10. Conductivity was measured and
compared to potassium chloride standards with a range of 0.001 M to 1.0 M.

3.3.2.2 Anions

The 1:1 sediment-to-water extracts were analyzed for anions using an ion chromatograph. Fluoride,
acetate, formate, chloride, nitrite, bromide, nitrate, carbonate, phosphate, sulfate, and oxalate were
separated on a Dionex ®AS17 column with a gradient elution of 1 mM to 35 mM sodium hydroxide and
measured using a conductivity detector. This methodology is based on U.S. Environmental Protection
Agency (EPA) Method 300.0A (EPA 1984) with the exception of using the gradient elution of sodium
hydroxide.

3.3.2.3 Cations and Trace Metals

Major cation analysis was performed using an inductively coupled plasma (ICP) unit using high-
purity calibration standards to generate calibration curves and verify continuing calibration during the
analysis run. Dilutions of 100x, 50%, 10x, and 5x were made of each sample for analysis to investigate
and correct for matrix interferences. Details are found in EPA Method 6010B (EPA 2000b). The second
instrument used to analyze trace metals, including technetium-99 and uranium-238, was an inductively
coupled plasma mass spectrometer (ICP-MS) using the PNNL-AGG-415 method (PNNL 1998). This
method is quite similar to EPA Method 6020 (EPA 2000c).

3.3.2.4 Alkalinity and Carbon

The alkalinity and inorganic/organic carbon content of several of the 1:1 sediment-to-water extracts
were measured using standard titration with acid and a carbon analyzer respectively. The alkalinity
procedure is equivalent to the U.S. Geological Survey Method Field Manual (USGS 2001)
http://water.usgs.gov/owq. Inorganic and organic carbon in the water extracts were determined using a
carbon analyzer and ASTM Method D4129-88 (1988) “Standard Test Method for Total and Organic
Carbon in Water by High Temperature Oxidation and by Coulometric Detection.”

3.3.2.5 NTA

Analysis for NitriloTriacetic Acid (NTA) was performed using a 1 to 35 mM Gradient elution on a
Dionex AS17 column for 20 minutes. The 1:1 extracts were spiked with 16 ppm NTA. The peak areas of
the spiked extracts were then compared to the 1:1 extracts with no NTA added and the peak areas of a
known 16 ppm NTA standard.

® Dionex is a registered trademark of Dionex Corporation, Sunnyvale, California.
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3.3.3 Porewater, Suction Candle, and Groundwater Composition

Eleven samples (2B, 6B, 20B, 21A, 36A, 38A, 84, 105C, 110B, 110A, and 113) were packed in
drainable cells that were inserted into an ultracentrifuge. The samples were centrifuged for up to 8 hours
at several thousand gravitational forces (g’s) to squeeze the porewater out of the sediment. Further,
sampling of suction candles that were emplaced in the borehole at strategic depths as the borehole was
decommissioned was performed periodically for all the suction candles on the following dates: February
12, 2002, May 17, 2002, July 2, 2002, July 30, 2002, and September 24, 2002. Chemical composition
results are compared with both the ultracentrifuged porewaters and the calculated porewaters from the 1:1
sediment to water extracts. The one groundwater sample was also characterized. All these solutions were
for pH, electrical conductivity, cation, trace metals, and anions using the same techniques as used for the
1:1 sediment-to-water extracts.

3.3.4 Radioanalytical Analysis
3.3.4.1 Gamma Energy Analysis

Gamma energy analysis (GEA) was performed on sediment from all core “A” and selected “B, C,
and D” sleeves and some of the grab samples. All samples for gamma energy analysis were analyzed
using 60%-efficient intrinsic germanium gamma detectors. All germanium counters were efficiency
calibrated for distinct geometries using mixed gamma standards traceable to the National Institute of
Standards and Technology. In the first GEA counting campaign field moist samples were placed in 150—
cm’ counting containers and analyzed for 100 minutes in a fixed geometry. All spectra were background
subtracted. Spectral analysis was conducted using libraries containing most mixed fission products,
activation products, and natural decay products. Control samples were run throughout the analysis to
ensure correct operation of the detectors. The controls contained isotopes with photo peaks spanning the
full detector range and were monitored for peak position, counting rate, and full-width half-maximum.
Details are found in Gamma Energy Analysis, Operation, and Instrument Verification using Genie2000
Support Software (PNNL 1997).

3.3.4.2 Tritium Content in 1:1 Sediment to Water Extracts, Perched, and Groundwater

The tritium content of selected sediment samples was determined directly on the water extracts by
liquid scintillation using PNNL-AGG-002 (PNNL 2000).

3.3.5 Carbon Content of Sediment

The carbon content of borehole sediment samples was determined using ASTM Method D4129-88,
(ASTM 1988). Total carbon in all samples was determined using an UIC Coulometrics Inc. Model 5051
Carbon Dioxide Coulometer” with combustion at approximately 980°C. Ultrapure oxygen was used to
sweep the combustion products through a barium chromate catalyst tube for conversion to carbon dioxide.
Evolved carbon dioxide was quantified through coulometric titration following absorption in a solution
containing ethanolamine. Equipment output reported carbon content values in micrograms per sample.
Soil samples for determining total carbon content were placed into pre-combusted, tared platinum

™ Model 5051 Carbon Dioxide Coulometer is a trademark of UIC Coulometrics, Inc., Joliet, Illinois.
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combustion boats and weighed on a four-place analytical balance. After the combustion boats were
placed into the furnace introduction tube, a 1-minute waiting period was allowed so that the ultrapure
oxygen carrier gas could remove any carbon dioxide introduced to the system from the atmosphere during
sample placement. After this system sparge, the sample was moved into the combustion furnace and
titration begun. Sample titration readings were performed at 3 minutes after combustion began and again
once stability was reached, usually within the next 2 minutes. The system background was determined by
performing the entire process using an empty, pre-combusted platinum boat. Adequate system
performance was confirmed by analyzing for known quantities of a calcium carbonate standard.

Inorganic carbon contents for borehole sediment samples were determined using a UIC
Coulometrics, Inc. Model 5051 Carbon Dioxide Coulometer™. Soil samples were weighed on a four-
place analytical balance, then placed into acid-treated glass tubes. Following placement of sample tubes
into the system, a 1-minute waiting period allowed the ultrapure oxygen carrier gas to remove any carbon
dioxide introduced to the system from the atmosphere. Inorganic carbon was released through acid-
assisted evolution (50% hydrochloric acid) with heating to 200°C. Samples were completely covered by
the acid to allow full reaction to occur. Ultrapure oxygen gas swept the resultant carbon dioxide through
the equipment to determine inorganic carbon content by coulometric titration. Sample titration readings
were performed 5 minutes following acid addition and again once stability was reached, usually within
10 minutes. Known quantities of calcium carbonate standards were analyzed to verify that the equipment
was operating properly. Background values were determined. Inorganic carbon content was determined
through calculations performed using the microgram-per-sample output data and sample weights.
Organic carbon was calculated by subtracting inorganic carbon from total carbon and using the
remainder.

3.3.6 8 M Nitric Acid Extract

Approximately 20 grams of oven-dried sediment was contacted with 8 M nitric acid at a ratio of
approximately 5 parts acid to 1 part sediment. The slurries were heated to approximately 80°C for several
hours and then the fluid was separated by centrifugation and filtration through 0.2 pm membranes. The
acid extracts were analyzed for major cations and trace metals using ICP and ICP-MS techniques,
respectively. The acid digestion procedure is based on EPA SW-846 Method 3050B (EPA 2000a) that
can be accessed on-line at http://www.epa.gov/epaoswer/hazwaste/test/sw846.htm.

3.3.7 Elemental Analysis

The elemental composition of the bulk sediment and clay fractions was determined by a combination
of energy and wavelength dispersive x-ray fluorescence using methods developed at PNNL. Samples
analyzed by energy dispersive x-ray fluorescence method utilizing a KEVEX® 0810A commercial x-ray
fluorescence excitation and detection subsystem. Sample preparation involved mixing the sample in a
Coors high-density alumina (AL,O;) mortar and pestle. Six hundred milligrams of the mixed sample were
removed and further ground to approximately 300 mesh size, placed between two sheets of stretched
para-film, and loaded into the 0810A x-ray fluorescence unit. Acquisition times ranged between 600 and

© KEVEX is a copyright trademark of Thermo Kevex X-Ray, Scotts Valley, California.
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3,000 seconds, depending on the targets (iron, gadolinium, silver, zirconium). Forty-one elements
(aluminum, antimony, arsenic, barium, bromine, cadmium, calcium, cerium, cesium, chlorine, chromium,
copper, gallium, indium, iodine, iron, lanthanum, lead, manganese, molybdenum, nickel, niobium,
palladium, phosphorous, potassium, rhodium, rubidium, ruthenium, selenium, silicon, silver, strontium,
sulfur, tellurium, thorium, tin, titanium, uranium, vanadium, yttrium, and zinc) were analyzed on each
sample and the spectrum interpretation was by the backscatter fundamental parameter approach . Sample
analysis by the wavelength method was accomplished using a Siemens Spectra 3000 instrument,
equipped with both a flow counter detector to detect soft radiation of the low Z elements and a
scintillation counter detector for the harder radiation of the higher Z elements. Bulk solid samples were
prepared by taking 180 to 1,500 milligrams of approximately 300 mesh ground sample and pressing it
into a 3.2-cm diameter pellet, using a 27,000-kilogram laboratory press. Standard addition and similar
matrix methods were used to generate calibration curves for sodium and magnesium, which were then
used to process the data. Additional discussion of x-ray fluorescence techniques for quantitative analysis
of sediment are found in Chapter 7 “Elemental Analysis by X-Ray Fluorescence Spectroscopy” of ASA
(1996), part 3, pages 161 to 223 and in the Siemens Spectra 3000 Reference Manual.

3.3.8 Particle Size Distribution

The wet sieving/hydrometer method was used to determine the particle size distribution. The
technique is described in (ASA [1986a], part 1; method 15-5 Hydrometer Method [pages 404 to 408]) and
concentrated on quantifying the silt and clay distribution. The silt and clay separates were saved for
mineralogical analyses. Samples from the borehole that were used for the hydrometer method were never
air or oven dried to minimize the effects of particle aggregation that can affect the separation of clay
grains from the coarser material.

3.3.9 Particle Density

The particle density of bulk grains was determined using pychnometers (see ASA 1986b, part 1;
method 14-3 Pychnometer Method [pages 378 to 379]) and oven-dried material. The particle density is
needed to determine the particle size when using the hydrometer method.

3.3.10 Mineralogy

The mineralogy of the whole rock and clay size fractions of the selected sediment samples was
determined by x-ray diffraction (XRD) techniques. Each bulk sample was prepared for XRD analysis by
placing two grams of sample into a tungsten carbide ball mill grinder for 10 minutes. The resultant
powders were side packed into aluminum sample holders prior to being analyzed. Preparation of the clay
fraction for XRD analysis began by dispersing the whole rock sediment using the following technique.
Approximately 100 g of sediment was transferred into a 1.0 L bottle and mixed with 1.0 L of 0.001 M
solution of sodium hexametaphosphate. The suspensions were allowed to shake over night to ensure
complete dispersion. The sand and silt fractions were separated from the clay fractions by repetitively
using Stoke’s settling law described in Jackson (1969). The lower limit of the silt fraction was taken at
approximately 2 microns. The dispersed slurry was allowed to settle for approximately 24 hours and the

™ Spectra 3000 is a trademark of Siemens AG, Erlangen, Germany.
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unsettled slurry decanted. The settled solids were then re-suspended in approximately 1 liter of the
sodium hexametaphosphate solution and the settling repeated several more times. All batches of settled
solution containing the suspended clays for each sample depth were composited. Once the supernatant
solution appeared to be clear, the clay separation was complete.

Each composited clay suspension was concentrated to an approximate volume of 30 mls by adding a
few drops of 10N magnesium chloride to the dispersing solution. Concentrations of clay in the
concentrated suspensions were determined by drying known volumes of the suspension and weighing the
dried sediment. The density of the slurry was calculated from the volume pipetted and the final weight of
dried sediment. Volumes of slurry equaling 250 mg of clay were transferred into centrifuge tubes and
saturated with either Mg*" or K™ cations. Clay samples were prepared using the Drever (1973) method
and placed onto an aluminum slide for XRD analysis. Due to the tendency of the clay film to peel and
curl, the Mg saturated specimens were immediately solvated with a few drops of a 10% solution of
ethylene glycol in ethanol and placed into a dessiccator containing excess ethylene glycol for a minimum
of 24 hours. Potassium saturated slides were air dried and analyzed, then heated to 550°C for one hour
and reanalyzed.

All bulk and clay-sized samples were analyzed on a Scintag XRD unit equipped with a Pelter
thermoelectrically cooled detector and a copper x-ray tube. Randomly oriented whole sediment samples
were scanned from 2 to 65° 26 with a dwell time of 14 seconds. Slides of preferentially oriented clay
were scanned from 2 to 45° 26 with a dwell time of 2 seconds. Scans were collected electronically and
processed using the JADE™® XRD pattern processing software. Some patterns were corrected for minor
angular deviation using the quartz reflection. Identification of the mineral phases was based on mineral

powder diffraction files published by the JCPDS International Centre for Diffraction Data'.

Semi quantification of mineral phases in the whole rock sediment samples were determined by the
whole pattern fitting technique provided by JADE® XRD pattern processing software. The software
allows the whole pattern fitting of the observed data and Reitveld refinement of crystal structures. A
diffraction model is fit by non-linear least-square optimization in which certain parameters are varied to
improve the fit between the two patterns. Success of the refinement process is measured by a ratio of the
weighted and calculated errors. This value, referred to as “goodness of fit”, is expected to be close to one
in an ideal refinement.

Clay mineral abundances in the less than 2 micron fraction were calculated using the method
outlined by Brindley and Brown (1980), which relies on external standards. The relationship of intensity
and mass absorption to the weight fraction of an unknown phase is expressed as:

Vl=py/pt (WD)

® JADE is a registered trademark of Rigaku Corporation, Tokyo, Japan.

' JCPDS International Centre for Diffraction Data, Newton Square, Pennsylvania.
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Where:

I is the intensity of the unknown phase,

I, is the intensity of the pure phase,

U, is the mass absorption of the pure phase,

u is the average mass absorption of the unknown mixture, and
wi is the weight fraction of the unknown.

Pure mineral phases of illite, smectite, kaolinite, and chlorite were obtained from the Clay Mineral
Society’s source clays repository, (operated from the University of Missouri in Columbia, MO), and
analyzed under the same conditions as the sediment samples. Quartz, feldspars, and calcite standards
were purchased from the Excalibur Mineral Company (Peekskill, New York), ground and analyzed on the
diffractometer to obtain intensities for pure non-clay phases. Based on previous data collected from
Hanford sediments, an average mass absorption of 55 cm’g” was assumed for the clay samples. Mass
absorption values for standard reference minerals were calculated from published chemical data.
Furthermore, the copper x-ray tube used on the Scintag diffractometer generated a minor amount of
tungsten Ka radiation, which produced peaks in the XRD. These extra peaks were identified and did not
compromise the quality of the XRD data.

3.3.11 Water Potential (Suction) Measurements

Suction measurements were made on the two lower core liners in each split-spoon sampler from the
borehole using the filter paper method PNL-MA-567-SFA-2 (PNL 1990b). This method relies on the use
of a sandwich of three filter papers that rapidly equilibrates with the sediment sample. The middle filter
paper does not contact sediment that might stick to the paper and bias the mass measurements. At
equilibrium, the matric suction in the filter paper is the same as the matric suction of the sediment sample.
The dry filter paper sandwiches were placed in the airtight liners while still filled with the sediment for
three weeks to allow sufficient time for the matric suction in the sediment to equilibrate with the matric
suction in the filter paper. The mass of the wetted middle filter paper that has had no direct contact with
the sediment is subsequently determined, and the suction of the sediment is determined from a calibration
relationship between filter paper water content and matric suction.

The relationships used for converting the water content of filter paper to matric suction for Whatman
#42 filter paper have been determined by Deka et al. (1995) and can be expressed as:

Sm= 10%"*-°"W/10 for w < 0.5
Sm= 10%"1W/10 for w >0.5
where: Sm = the matric suction (m) and

w = the gravimetric water content (g/g)
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Two hundred forty-five core liner and grab samples from borehole 299-E33-46 were analyzed for
water content and 60 of the core liners were analyzed for soil matric suction. The matric potential
samples covered the entire borehole profile from 11.8 to 253.4 ft bgs (3.6 to 77.3 m).
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4.0 Results and Discussion

This section presents the geochemical and physical characterization data collected on sediment from
borehole 299-E33-46. The tier 1 phase emphasized tests that were inexpensive or that were key to
determining the vertical distribution of contaminants. Information on the borehole sediment presented
in sections 4.1 and 4.2 includes moisture content, pH and electrical conductivity of 1:1 sediment to water
extracts, and measurements of major cations, anions, trace metals, and radionuclides in 1:1 sediment
water extracts. A gamma energy analysis on the sediments was performed to look for gamma emitting
isotopes and to define the extent of the strontium-90 bremsmstrahlung penetration. In addition tritium,
strontium-90, technetium-99, and uranium-238 concentrations in the sediment are discussed in
Section 4.3. The particle size, mineralogy, and tritium content of selected sediment samples were
measured in tier 2 phase to aid in selecting contacts between major geologic units and to attempt to better
define the vertical extent of the tank B-110 loss event. We also were looking for geochemical and
mineralogic changes caused by interaction with the caustic fluids leaking from piping infrastructure
associated with tank B-110. Selected sediment samples were also placed in the UFA to squeeze out
vadose zone porewater to check the accuracy of using the 1:1 sediment to water extracts to calculate
porewater compositions. Finally, the results of sampling suction candles that were emplaced in the
borehole at strategic depths as the borehole was decommissioned are compared with both the squeezed
porewaters and the calculated porewaters from the 1:1 sediment to water extracts.

4.1 Moisture Content

The moisture content of the sediment from the sleeves and grab samples is listed in Table 4.1 and
graphed in Figure 2.3. Figure 2.3 shows both the field volumetric moisture obtained via neutron logging
and the gravimetric moisture content of small aliquots of sediment taken during the geologic description
activities. The moisture content profiles correlate with the lithology described in Section 2.5 and shown
in Figure 2.3. The first region with elevated moisture is the 0.5 m (1.5 ft) thick mud lens at 22.86 m
(84 to 85.5 ft) bgs within the Hanford H2 sand unit. Near the bottom of the Hanford H2 unit at 51.21 m
(168 ft) bgs is a moist approximate 9.1 cm (3.6 inch) thick lens of fine-grained material with moisture
contents of 20.2% by weight. Within the Hanford H3 unit there is a slightly moist lens at 56.39 m
(185 ft) bgs with a moisture content of 12.3 wt. % compared to values of 3 to 4 wt % nearby. The PPlz
lithology between 67.06 and 68.88 m (220 and 226 ft) bgs is the wettest material in the borehole with
moisture contents ranging from 15 to 29 wt %. The gravels below this PPlz silt are relatively dry down to
the water table that currently is found at 77.97 m (255.8 ft) bgs.

The laboratory-generated data show gravimetric moisture content (wt%) and the field data are related
to volumetric water content (vol%). If the field tool had been calibrated and the vadose zone bulk density
profiles were known, one could convert the field data to gravimetric data by dividing by the bulk density.
For our needs, we merely compare the two logs qualitatively to see if the moisture peaks correspond
depthwise.
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Table 4.1. Moisture Content of Sediment from Borehole 299-E33-46. (4 pages)

Lithologic Sample | Mid Depth % Lithologic Sample Mid Depth %
Unit No. | (Vertical f)’ | Moisture Unit No. (Vertical ft) | Moisture
Bekfl 02C 12.94 3.89% H2 64B 131.35 3.27%
Bekfl 02B 12.94 4.48% H2 64A 131.85 3.11%
Bekfl 02A 12.94 3.60% H2 65 132.85 3.36%
Bekfl 06D 19.62 3.71% H2 66 134.2 3.66%
Bekfl 06C 20.12 4.66% H2 67 136 4.56%
Bekfl 06B 20.62 4.78% H2 68 137.6 4.29%
Bekfl 06A 21.12 4.84% H2 69D 138.55 3.87%
Bekfl 10C 28.42 5.94% H2 69C 139.05 4.32%
Bekfl 10B 28.92 4.94% H2 69B 139.55 4.35%
Bekfl 10A 29.42 3.30% H2 69A 140.05 2.52%

H2 16D 39.97 4.31% H2 70 141.4 3.20%
H2 16C 40.72 4.15% H2 71 143.35 3.44%
H2 16B 41.22 5.10% H2 72 145.5 3.91%
H2 16A 41.72 3.97% H2 73 147.45 4.66%
H2 17D 42.52 4.31% H2 74D 148.65 4.16%
H2 17C 43.02 4.55% H2 74C 149.15 3.83%
H2 17B 43.52 4.42% H2 74B 149.65 3.03%
H2 17A 44.02 4.70% H2 T4A 150.15 4.27%
H2 18D 44.92 4.46% H2 75 151.45 4.72%
H2 18C 45.42 3.72% H2 76 153.3 3.87%
H2 18B 45.92 5.32% H2 77 155.5 4.04%
H2 18A 46.42 5.33% H2 78 157.6 4.05%
H2 20D 49.12 4.87% H2 79D 158.65 4.43%
H2 20C 49.62 0.29% H2 79C 159.15 5.03%
H2 20B 50.12 3.67% H2 79B 159.65 6.14%
H2 20A 50.62 3.40% H2 79A 160.15 5.12%
H2 21D 51.52 1.91% H2 79 160.55 4.00%
H2 21C 52.02 3.29% H2 80 161.75 4.36%
H2 21B 52.52 4.30% H2 81 161.75 4.21%
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Table 4.1. Moisture Content of Sediment from Borehole 299-E33-46. (4 pages)

Lithologic Sample Mid Depth % Lithologic Sample Mid Depth %
Unit No. | (Vertical ft) | Moisture Unit No. (Vertical ft) | Moisture
H2 21A 53.02 4.82% H2 82D 163.05 6.22%
H2 21(shoe) 53.44 5.15% H2 82C 163.55 3.98%
H2 22 54.6 4.40% H2 82B 164.05 4.32%
H2 24 56.7 5.25% H2 82A 164.55 3.42%
H2 25 58.4 5.03% H2 82 164.95 3.93%
H2 26D 59.22 4.24% H2 82 Dup 164.95 4.14%
H2 26C 59.72 4.58% H2 83D 165.35 3.29%
H2 26C-DUP 59.72 4.40% H2 83C 165.85 4.33%
H2 26B 60.22 4.16% H2 83B 166.35 4.23%
H2 26-A 60.72 4.08% H2 83A 166.85 3.34%
H2 27 62.1 4.21% H2 83 167.25 4.07%
H2 29 66.05 4.04% o 84 168.45 8.77%
H2 30 67.95 4.18% *x 85 168.25 20.21%"°

H2 31D 68.95 3.69% H2 86D 169.65 3.87%
H2 31C 69.45 3.89% H2 86C 170.15 3.43%
H2 31B 69.95 4.36% H2 86B 170.65 3.82%
H2 31A 70.45 4.81% H2 86A 171.15 531%
H2 31(shoe) 70.85 3.70% H2 86 171.55 4.64%
H2 33 73.5 4.15% H2 87 172.9 4.36%
H2 34 75.4 7.15% H2 88 175.1 4.61%
H2 35 77.35 5.63% H3 89 177.1 4.70%
H2 36D 78.95 4.78% H3 90D 178.35 3.63%
H2 36C 79.45 4.79% H3 90C 178.85 4.70%
H2 36B 79.95 4.36% H3 90B 179.35 3.78%
H2 36A 80.35 4.38% H3 90A 179.85 4.37%
H2 37 80.9 4.62% H3 90 180.25 4.66%
H2 38D 81.55 3.98% H3 91 181.75 4.37%
H2 38C 82.05 4.49% H3 92 183.7 5.66%
H2 38B 82.55 4.35% Hork 93 185.1 12.33%*
H2 38A 83.05 5.09% H3 94 186.85 4.38%
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Table 4.1. Moisture Content of Sediment from Borehole 299-E33-46. (4 pages)

Lithologic Sample Mid Depth % Lithologic Sample Mid Depth %
Unit No. | (Vertical ft) | Moisture Unit No. (Vertical ft) | Moisture
H2 38(shoe) 83.45 5.23% H3 95 188.45 4.07%
* 39 84.55 19.39%* H3 96D 189.35 3.37%
* 40 86.3 18.16%* H3 96C 189.85 3.41%
H2 41 87.85 3.49% H3 96B 190.35 2.77%
H2 42D 89.12 3.74% H3 96A 190.8 2.42%
H2 42C 89.62 2.67% H3 101D 199.45 3.00%
H2 42B 90.12 2.12% H3 101C 199.85 3.65%
H2 42A 90.62 2.83% H3 101B 200.45 2.91%
H2 43 91.45 3.26% H3 101A 200.95 2.94%
H2 44 93.15 3.00% H3 105D 208.55 2.91%
H2 45 95.15 3.37% H3 105C 208.95 3.83%
H2 46 96.8 3.16% H3 105B 209.45 3.71%
H2 47D 98.12 2.03% H3 105A 209.95 3.73%
H2 47C 98.62 2.10% PPlz 108 216.7 5.06%
H2 47B 99.12 2.02% PPlz 108 Dup 216.7 4.72%
H2 47A 98.62 2.18% PPlz 109D 217.95 4.17%
H2 47(shoe) 100.04 2.09% PPlz 109C 218.45 4.58%
H2 48 101.55 2.13% PPlz 109B 218.95 5.75%
H2 49 103.85 2.75% PPlz 109A 219.45 4.35%
H2 50 105.7 2.96% PPlz 109 219.95 17.88%*
H2 51 107.45 2.53% PPlz 110D 220.65 23.33%"°
H2 52 109 3.52% PPlz 110C 221.15 29.04%*
H2 53D 109.92 2.98% PPlz 110B 221.65 27.24%*
H2 53C 110.42 3.21% PPlz 110BDup 221.65 27.55%"°
H2 53B 110.92 2.51% PPlz 110A 222.05 25.94%*
H2 53A 111.42 2.58% PPlz 111 223.5 14.98%*
H2 54 113 2.90% PPlz 112 223.5 15.91%*
H2 55 114.9 2.97% PPlz 113 225.9 14.99%"
H2 56 117 2.82% PPlg 114 228.45 3.10%
H2 57D 118.42 2.80% PPlg 115C 229.75 4.21%
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Table 4.1. Moisture Content of Sediment from Borehole 299-E33-46. (4 pages)

Lithologic Sample | Mid Depth % Lithologic Sample Mid Depth %

Unit No. (Vertical ft)" | Moisture Unit No. (Vertical ft) | Moisture
H2 57C 118.92 2.98% PPlg 115B 230.25 3.04%
H2 57B 119.42 2.72% PPlg 115A 230.75 3.71%
H2 57TA 119.92 2.09% PPlg 120D 239.95 3.32%
H2 58 121.5 3.31% PPlg 120C 240.45 3.46%
H2 59 123.5 3.21% PPlg 120B 240.95 3.71%
H2 60 118.5 3.48% PPlg 120A 241.45 2.50%
H2 61 125.05 3.17% PPlg 123A 245.75 3.33%
H2 62 126.75 3.38% PPlg 127C 254.15 4.57%
H2 63 128.9 5.49% PPlg 127B 253.65 4.06%
H2 64D 130.35 3.63% PPlg 127A 253.15 3.17%
H2 64C 130.85 3.21%

Wto convert to m multiply by 0.3048

H2 = Hanford H2 sand sequence

H3 = Hanford H3 unit-lower sand sequence

PPlz = Plio-pleistocence mud unit

PPlg = Plio-pleistocene gravelly unit

Bckfl = backfill

* k*kE% = various thin fine-grained lenses in the Hanford sand units.
# denotes the wet zones described in the text.

No perched water was observed in the PP1z unit as was found between 69 to 71 m (227 to 233 ft) bgs
during the drilling of borehole 299-E33-45 at the BX Tank Farm (see Serne et al. 2002¢ for details). A
water sample was taken at the bottom of the 299-E33-46 borehole prior to its being decommissioned. The
chemical composition for the groundwater is described along with the UFA porewaters, suction candle
derived porewaters, and dilution corrected 1:1 sediment to water extracts in the sections that follow.

4.2 1:1 Sediment-to-Water Extracts

The main objective for placing the 299-E33-46 borehole at the location approximately 4.6 m (15 ft)
from the tank wall was to investigate whether the field gamma log anomaly (bremsstrahlung radiation)
truly could be correlated with strontium-90 in the vadose zone sediments and to investigate whether other
non-gamma emitting radionuclides were present. Details on the drivers for installing this borehole are
discussed in Section 3.2.2 in the B-BX-BY Field Investigation Report [FIR]. The borehole was extended
to groundwater in order to track other mobile contaminants that can’t be tracked with gamma logging
such as technetium-99 and nitrate. The most economical method for determining the distribution of the
mobile contaminants in the vadose zone sediment is to use water extracts of the sediments because most
of the sediment is too dry to readily extract native porewater. The following sections discuss the results
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of the analysis done on the water extracts and the few selected porewaters that were obtained by
ultracentrifugation in the unsaturated flow apparatus (UFA).

4.2.1 pH and Electrical Conductivity

The pH and electrical conductivity for the water extracts and UFA squeezed porewaters are shown in
Table 4.2 and Figure 4.1. The electrical conductivity for the 1:1 sediment-water extracts has been
corrected for dilution with deionized water, but the pH is plotted as measured in the 1:1 sediment to water
extracts. Note that Figures 4.1 through 4.5 also show data for porewaters obtained after the borehole was
decommissioned through the use of suction candles. A discussion of the suction candles and data
obtained over time from the candles will be discussed in Section 4.11.

The pH profile shows that between 30.48 and 45.72 m (52 and 83 ft) bgs (in the Hanford formation
H2 middle sand sequence), there are elevated values (8.5 to 9.5) suggesting the presence of caustic waste
interaction with the sediment. Below the fine-grained lens at approximately 25.6 to 25.9 m (84 to
85 ft) bgs is another lobe of slightly elevated pH with values between 8.8 and 9.1. This deeper zone with
elevated pH extends from 29.3 to 36.6 m (96 to 120 ft) bgs and is also within the Hanford formation H2
unit. The thin fine-grained lens at approximately 25.9 m (85 ft) bgs does not show elevated pH or
elevated electrical conductivity and thus appears to be acting as a partial barrier to tank related fluid
migration. The electrical conductivity profile is similar to the elevated pH profile in that it shows two
regions with high values. The shallower region starts at 15.4 m (50.6 ft) bgs, a bit shallower than the
elevated pH zone, and extends down to the thin fine-grained lens at 25.6 to 25.9 m (84 to 85 ft) bgs. The
dilution corrected (calculated) porewater electrical conductivity ranges from 6.5 to 15 mS/cm in this
region. The deeper elevated EC zone extends from 27.6 to 42.7 m (90.6 to 140 ft) bgs with calculated
porewater conductivities ranging from 5.7 to 12.75 mS/cm. This deeper zone of elevated electrical
conductivity is less concentrated than the shallow zone and resides within the lower portion of the
Hanford formation H2 unit. It is possible that small portions of tank related fluids have mixed with the
natural sediment moisture all the way down to the thin fine-grained lens at approximately 51 m
(168 ft) bgs but below 51 m (168 ft) bgs the electrical conductivity values are not significantly elevated
compared to values calculated in this zone in an uncontaminated borehole, 299-E33-338 as discussed in
Lindenmeier et al. 2002. The porewaters that were extracted from selected samples using the
ultracentrifuge (UFA) show slightly lower pH values than the 1:1 sediment to water extracts and the
actual porewater electrical conductivity values are often significantly lower than calculated porewater
conductivities obtained by making dilution corrections on the 1:1 sediment to water extracts. This
discrepancy was also found at borehole 299-E33-45 east of the BX-102 tank. Unlike the contaminated
sediments around REDOX tanks in the SX tank farm, the more dilute wastes in the sediments that
surround the two tanks studied in the B-BX-BY WMA appear to have more of the wastes in a form that is
not present in the actual porewater but readily re-dissolves upon addition of de-ionized water. At the SX
tank farm the actual porewater electrical conductivities and the calculated values from dilution correcting
the 1:1 water extracts agreed reasonably well; however the absolute values at SX were much larger
because of the very high sodium nitrate concentrations that were present.
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Table 4.2. Water Extract pH and Electrical Conductivity Values

Sample ID Mid Depth Dilution 1:1 pH 1:1 EC Pore EC
(ft® Factor (mS/cm) (mS/cm)

Backfill
2B-UFA 12.94 1 7.89 6.35°
02A 13.7 27.8 7.89 0.154 4.28°
06B-UFA 20.62 1 7.90 7.54°
06A 21.12 20.66 7.48 0.133 2.75°
10A 29.42 30.33 7.83 0.139 422
Hanford H2 Sand (upper sequence) Unit
16A 41.72 25.18 7.39 0.139 3.5
17A 44.02 21.29 7.78 0.137 2.92
18A 46.42 18.75 8.10 0.142 2.66
20B-UFA 50.12 1 8.23 0.85°
20A 50.62 29.43 8.11 0.276 8.12%
21C 52.02 29.45 9.09° 0.317 9.34°
21A-UFA 53.02 1 8.69° NA®
21A 53.02 20.75 9.18° 0.42 8.71°
21A-dup 53.44 19.42 8.48 0.413 8.02°
22 54.6 22.75 9.27° 0.544 12.38"°
24 56.7 19.05 9.47° 0.778 14.82°
25 58.4 19.92 9.51° 0.583 11.61°
26C 59.72 19.45 9.49° 0.549 10.68°
26C-dup 59.72 22.74 9.54° 0.567 12.89°
26-A 60.72 24.5 9.49° 0.615 15.07°
27 62.1 23.78 9.52° 0.586 13.94°
29 66.05 24.84 9.18 0.367 9.12°
31C 69.45 28.74 9.13 0.362 10.4°
31B 69.95 23.92 8.89 0.367 8.78"°
31A 70.45 20.8 8.18 0.328 6.82°
31A-dup 70.45 27.03 8.10 0.366 9.89°
33 73.5 25.04 9.08° 0.345 8.64°
35 77.35 15.03 8.8 0.367 5.51°
36C 79.45 21.67 8.84 0.346 7.5°
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Table 4.2. Water Extract pH and Electrical Conductivity Values

Sample ID Mid Depth Dilution 1:1 pH 1:1 EC Pore EC
(ft® Factor (mS/cm) (mS/cm)

36A-UFA 79.95 1 8.39 1.03%®
36A 79.95 22.85 8.44 0.354 8.09®
38C 82.05 24.7 9.00° 0.345 8.52°
38A-UFA 83.05 1 8.45 3.98%
38A 83.05 19.64 8.76 0.331 6.5%
Natural Background Sediments 7.1t07.5 1.4t04.0
Thin Fine Grained Lens
39 84.55 5.17 8.26 0.345 1.78
39-dup 84.55 5.41 8.18 0.342 1.85
Hanford H2 Sand (middle sequence) Unit
41 87.85 27.98 7.84 0.165 4.62
42A 90.62 35.28 7.74 0.163 5.75
46 96.8 31.85 8.90° 0.276 8.79°
47A 98.62 45.97 8.84° 0.237 10.89°
52 109 28.4 8.75° 0.292 8.29°
53A 111.42 38.76 9.09° 0.329 12.75°
57A 119.92 47.96 8.84° 0.232 11.13°
64A 131.85 32.15 8.19 0.257 8.26°
69A 140.05 39.7 8.20 0.177 7.03
T4A 150.15 23.41 7.67 0.189 4.42
79A 160.15 19.54 7.52 0.181 3.54
82A 164.55 29.22 8.28 0.178 5.2
83A 166.85 29.95 8.07 0.181 5.42
Natural Background Sediments 7.1t07.5 1.4 to 4.0
Fine Grained Lens
84-UFA 168.45 1 8.02 1.52
84 168.45 11.44 7.64 0.217 2.48
Hanford H2 Sand Unit
86A 171.15 18.85 7.90 0.204 3.84
Hanford H3 Sand Unit
90A 179.85 22.89 7.60 0.154 3.52
96A 190.8 4131 7.97 0.136 5.62
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Table 4.2. Water Extract pH and Electrical Conductivity Values

Sample ID Mid Depth Dilution 1:1 pH 1:1 EC Pore EC
(ft® Factor (mS/cm) (mS/cm)
101A 200.95 34.06 7.57 0.139 4.73
105C-UFA 208.95 1 7.16 1.70
105A 209.95 26.84 7.55 0.142 3.81
Natural Background Sediments 7.3t0 7.4 1.9 to 3.3
Plio-pliestocene Mud Unit
109A 219.45 23.01 7.30 0.169 3.89
110B-UFA 221.65 1 7.42 1.41
110A-UFA 222.05 1 7.49 0.71°
110A 222.05 3.85 7.88 0.351 1.35°
110A-dup 222.05 3.85 7.81 0.319 1.23
113-UFA 225.9 1 7.47 0.752°
113 225.9 6.67 7.68 0.217 1.45°
Natural Background Sediments 7.3t07.7 0.9 to 3.1
Plio-pliestocene Gravel Unit
115A 230.75 27.17 7.38 0.153 4.16
120B 240.95 28.68 7.61 0.159 4.56
120A 241.45 39.95 7.56 0.161 6.43
123A 245.75 30.01 7.57 0.156 4.68
127A 253.15 31.57 7.62 0.174 5.49
Natural Background Sediments 7.4 to 7.6 4.0 to 5.0

Mto convert to meters multiply by 0.3048

* allows easy comparison of true porewater EC with calculated porewater EC.
® elevated values from caustic tank liquor.

Bold type = maximum values in profile.

EC = Electrical conductivity.

NA = not analyzed for lack of sample volume.
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Figure 4.1 Moisture Content, Water Extract pH, Calculated Porewater, UFA and Suction Candle
Porewater and Groundwater Electrical Conductivity for Borehole 299-E33-46

4.10



Because so many chemical reactions can affect the pH, it is not possible to determine whether the
fluid lost from the B-110 piping traveled mainly in a vertical direction or spread horizontally resulting in
a complicated vertical profile at this borehole.

4.2.2 Porewater Anion Composition

The 1:1 sediment-to-water extracts and the calculated porewater anion composition are shown in
Table 4.3 and Figure 4.2, respectively. When compared to the uncontaminated “baseline” vadose zone
sediments from borehole 299-E33-338 near the eastern fence line of the B tank farm, there are obvious
signs of elevated porewater concentrations of nitrate, fluoride, and bicarbonate. There are some
indications that phosphate and sulfate may be elevated in certain depth zones compared to the
uncontaminated sediments nearby. There is shallow nitrate contamination starting at about 15.4 m
(50.6 ft) bgs that extends to 23.6 m (77.4 ft) bgs, perhaps reaching the thin fine-grained lens at 25. 8 m
(84.5 ft) bgs. Still within the Hanford formation H2 unit between the depths of 26.8 and 51.2 m (87.8 and
168 ft) bgs is a more concentrated nitrate plume. At 40.2 m (132 ft) bgs the highest nitrate calculated
porewater concentration is found (approximately 1500 mg/L). The H2 sediment porewater between 50.1
and 51.4 m (164.5 and 168.5 ft) bgs contains approximately 500 mg/L nitrate. The Hanford formation H3
sediment also appears to contain elevated nitrate porewater concentrations that vary between 100 to
200 mg/L compared to the uncontaminated H3 sediment porewater concentration of 4 to 17 mg/L. The
PPIz unit also appears to contain slightly elevated nitrate porewater concentrations at approximately
130 mg/L compared to uncontaminated sediment porewater values that range from 2 to 14 mg/L. The
299-E33-46 borehole sediments in the PPIg coarse-grained unit may also contain elevated nitrate
porewater concentrations of approximately 50 mg/L compared to a natural background value of 10 mg/L.
Thus the sediment water extracts from this borehole appear to show elevated nitrate is present all the way
to the groundwater; however the bulk of the nitrate is found in the sediment between the depth of 33.5 to
51.4 m (110 to 168.5 ft) bgs in the Hanford H2 sand sequence with values reaching as high as 1.5 g/L or
approximately 0.025 M at 40.19 m (131.85 ft) bgs. The bulk of the water- extractable nitrate is bounded
between two thin fine-grained lenses in the H2 middle sequence sand unit. The upper bound is the fine-
grained lens at 37 m (120 ft) bgs and lower boundary is the fine-grained 2.5-ft thick lens that forms the
bottom of the H2 unit at 51 to 52 m (167 to 170 ft) bgs.

The porewater fluoride concentrations are elevated above the uncontaminated sediment baseline
range of 0.4 to 23 mg/L over a depth region from 15.4 to 33.9 m (50.6 to 111.4 ft) bgs. The highest
fluoride porewater concentrations are found between 18.6 and 25.3 m (61 and 83 ft) bgs within the
Hanford formation H2 unit at values that range from 110 to 210 mg/L.

The bicarbonate concentration in the porewaters also is elevated in the H2 middle sand sequence
between 22.9 and 50.9 m (75 and 167 ft) bgs; both above and within in the same zone with the largest
nitrate concentrations. Interestingly, the bicarbonate distribution in the sediment water extracts mimics
the elevated pH profile suggesting that either dissolution of natural carbonate minerals or capture of
vadose zone carbon dioxide during tank waste fluid neutralization might be the cause for the elevated
bicarbonate. The largest calculated porewater bicarbonate concentration occurs in the suspected paleosol
at 36.6 m (120 ft) bgs. However, based on the UF A squeezings the dilution-corrected 1:1 sediment to
water extract bicarbonate values are biased high because of dissolution of carbonate bearing salts. The

4.11



porewater bicarbonate maximum concentration varies between 0.1 and 0.21 M between 33.5 to 39.6 m
(110 to 130 ft) bgs around this potential paleosol at 36.6 m (120 ft) bgs.

The porewater sulfate concentrations appear to be slightly elevated in the deeper depths of the
borehole, rather than within the Hanford H2 unit where tank related fluids are generally found. The most
significant concentrations of sulfate in the shallow vadose zone are found in a narrow zone within the
middle sand sequence of the H2 unit between 42.7 and 50.6 m (140 and 166 ft) bgs. No UFA squeezings
were obtained from sediments from this narrow zone and the natural background sediments in the
borehole to the east, 299-E33-338, are also elevated. More puzzling are the elevated sulfate
concentrations in the PPIg lithology at the bottom of the borehole. The dilution corrected porewater
concentrations reach values approximately 500 mg/L. compared to natural background values of
approximately 40 mg/L.

The porewater chloride concentrations do not appear to be significantly elevated compared to the
nearby natural sediments from borehole 299-E33-338. Thus the observed chloride profile likely reflects
natural conditions. The phosphate porewater distribution in the vadose zone sediment at borehole
299-E33-46 shows elevated concentrations between approximately 16.6 and 25 m (54.6 and 82 ft) bgs
within the H2 upper sand sequence, the maximum concentrations are found in a thin zone at
approximately 18 m (60 ft) bgs with a dilution corrected value of 108 mg/L (0.0011 M). Generally,
soluble phosphate levels in natural sediments at Hanford are quite low because of precipitation of highly
insoluble apatite minerals. Based on the measured 1:1 sediment to water extracts, the tank waste is not
dominated by bismuth phosphate waste as was found at borehole 299-E33-45 northeast of tank BX-102.
The nitrite porewater distribution in borehole 299-E33-46 shows no noteworthy elevated values
throughout the profile.

The actual porewater concentrations (UFA squeezings) are plotted with the dilution corrected 1:1
water extracts in the tables and figures shown in this section. In the tables green shading is used to show
the comparison. There are plausible explanations for the dilution-corrected water extracts (i.e., calculated
porewaters) having larger concentrations, such as dissolution of material during the extraction process but
we cannot offer a geochemical explanation for the observed opposite trend found for a few of the
comparisons. The most likely explanation is analytical errors. In general, the comparison between actual
porewater and calculated porewater concentrations for nitrate and chloride values is good. For
bicarbonate, the dilution corrected extracts (calculated porewaters) show significantly larger values and
for some of the fluoride comparisons the same trend is seen wherein actual porewater concentrations are
lower than calculated concentrations.

4.2.3 Porewater Cation Composition

Table 4.4 shows the calculated concentrations of cations in the porewater from the vadose zone
sediment at 299-E33-46 borehole obtained by dilution correction of the 1:1 sediment-to-water extracts
and the selected actual porewaters obtained by ultracentrifugation. The distributions of several of the
major cations and minor cations are shown in Figures 4.3 and 4.4. The depth profiles for the divalent
alkaline earth cations calcium, magnesium, and strontium show remarkable similarities. All show
depleted concentrations over the depth range from between 15.4 or 16 m (50.6 or 52 ft) bgs down to 37 m
(120 ft) bgs where the concentrations return to values similar to those found in uncontaminated sediments.
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Conversely, the porewater sodium concentration is elevated from 15.4 m (50.6 ft) bgs down to 37 m

(201 ft) bgs in the H3 sand sequence. There is also elevated porewater potassium in the shallow vadose
zone from 50.6 to approximately 24 m (80 ft) bgs. The cation profiles for the divalent cations (calcium,
magnesium, and strontium) and the mono-valent cations (potassium and sodium) are related through ion
exchange reactions wherein the divalent cations that dominate the exchange sites in the natural sediments
are stripped off and replaced by the sodium and potassium (perhaps an impurity in the sodium hydroxide
used at Hanford to neutralize acidic waste streams). Barium differs from the other divalent cations and is
present at low concentrations perhaps reflecting only natural amounts are present that are not impacted by
tank fluid losses. Apparently, the sodium concentration in the porewaters below 37 m (120 ft) bgs are not
high enough to have stripped significant concentrations of the natural divalent cations from the sediments
despite the sodium being elevated in comparison to uncontaminated sediment extracts.

There also appears to be elevated concentrations of soluble aluminum and iron in the shallow profile
between 16 and 21 and 16 and 24 m (52 and 70 and 52 and 80 ft) bgs, respectively (see Figure 4.4).
Soluble silicon also appears elevated in discontinuous zones between 16 and 37 m (52 and 120 ft) bgs and
perhaps in a thin zone at 58 to 61 m (190 to 200 ft) bgs. These zones of high water soluble aluminum,
iron, and silicon may represent reaction and the presence of amorphous (more soluble) weathering
products from tank waste interactions with the vadose zone sediments.
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The maximum sodium porewater concentration is about 0.122 M in the zone from 16.6 to 18.9 m
(54.6 t0 62.1 ft) bgs and 0.101 M between 30 and 37 m (98 and 120 ft) bgs. The three highest porewaters
based on electrical conductivity have a chemical composition that is essentially 0.15 M sodium and
0.13 M bicarbonate, 0.01 M fluoride, 0.007 M sulfate and 0.003 M nitrate.

The actual porewater cation concentrations are in general always lower than the calculated porewater
concentrations derived from dilution correcting the 1:1 sediment to water extracts. The actual cation
concentrations vary from about one-half as large to one-seventh as large as the calculated porewater
concentrations as shown in Table 4.4 in the green shading for samples from the same depth intervals.
This suggests that there is readily dissolvable material in the vadose zone sediments that is not in the
dissolved state prior to the sediment extraction process.

The divalent cation distributions right below 37 m (120 ft) bgs do not show significant increases
above natural concentrations as would be expected at the very leading edge of the sodium ion exchange
pulse. However, the vadose zone sediment at 58 m (190 ft) bgs does appear to show excess divalent
cations, but because the sampling frequency near this depth is one sample every 3 m (10 ft) it is difficult
to delineate whether there is in fact a zone of excess divalent cations at the very leading edge of the
sodium plume. The sodium calculated porewater distribution does not show a distinct drop that could be
a sign of the maximum vertical extent of the tank related fluid lost to the ground.

This differs from the cation profile from borehole 299-W23-19 that shows very distinct separation of
the divalent cations from the sodium plume (see Figure 4.4 in Serne et al. 2002b) or the less pronounced
but still discernable separation from the sodium profile at the two more saline plumes between SX-108
and SX-109 tanks (see Figures 4.3 in both Serne et al. 2002c and 2002d). Based on personal
communication with Dr. Carl Steefel at Lawrence Livermore National Laboratory, the ion exchange
separation of the divalent cations, which are naturally the dominant cations on Hanford sediment
exchange sites, from the invading high sodium fluids is maximized when the invading sodium
concentrations are not large and when the ion exchange capacity of the sediments is moderate. This was
the case at 299-W23-19. The sodium concentrations observed at 299-E33-46 is about the same as at
299-W23-19 and fifty to one hundred thirty times less concentrated than the pore fluids around
SX-108/SX-109. The cation exchange capacity of the sediments near the tank B-110 is smaller than the
cation exchange capacity for the sediments below the SX tank farm. Both of these facts would make the
separation of divalent cations from the sodium porewater plume at 299-E33-46 the same or slightly less
than that observed at 299-W23-19. Thus, it seems strange that some separation is not observable at
299-E33-46. Perhaps the fact that sample frequency was only one sample per every 3 m (10 ft) in the
deeper vadose zone at 299-E33-46 as compared to near continuous coring at 299-W23-19 is the problem.
Because the chemical composition of the tank fluid lost near tank B-110 is not understood we can not
evaluate whether the calculated porewater composition is consistent with the fluids that were lost from
tank B-110. See the B-BX-BY FIR section 3.2.2.4 for more details.
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Figure 4.4. Pore Fluid Concentrations of Aluminum, Iron, Silicon, and Manganese (calculated from
sediment-to-water extracts), UFA and Suction Candle Porewaters and Groundwater for
299-E33-46 Borehole Sediment
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4.2.4 Porewater Trace Constituent Composition

The last group of analyzed constituents included radionuclides and trace metals. Calculated
porewater concentrations that were derived from dilution correction of the water extract values are listed
in Table 4.5 and shown in Figure 4.5. No strontium-90 above a detection limit of 9000 pCi/L was found
in water extracts.

Because the sediments are very dry in the Hanford formation (i.e., dilution factors are large), the
porewater technetium-99 concentrations appear to be between 39,800 and 89,800 pCi/L in places within
the Hanford formation and as large as 230,000 pCi/L in the Plio-Pleistocene mud unit. The analytical
data are difficult to interpret because of the low acid extractable and water extractable amount of
technetium per gram of sediment (generally <20 and <10 pCi/g, respectively). Technetium-99 water
extract and porewater data that are unequivocally above the quantitation limit are shown in Table 4.5. All
the data in the shallow depths is suspect thus it is difficult to determine if the technetium profile at
299-E33-46 from the tank B-110 transfer line leak can be traced from below the tank all the way to the
groundwater and whether B-110 is the source of technetium-99 in the deep sediments and groundwater.
Other sources could be nearby crib discharges.

Table 4.5 and Figure 4.5 show that there are elevated concentrations of uranium in the vadose zone
pore water between 15.4 and 37 m (50.6 and 120 ft) bgs (within the upper sand sequence of H2). There is
no indication of elevated uranium in the H3 unit, PP1z or PPlg units. There is no indication that uranium
has penetrated below 37 m (120 ft) bgs or into the fine-grained PPlz strata at this borehole. Thus the
source of the uranium in the groundwater near the B-BX tank farms is also not definitively explained
from the data generated from this borehole. The tank overfill at BX-102 or other sources are much more
probable sources for uranium in the groundwater below the B-BX-BY WMA. The pore water data for
chromium, arsenic and selenium are not consistent or of sufficient quality, because of low concentrations,
to evaluate their vertical distributions and to determine whether Tank B-110 fluids are present in the
borehole sediments.

There is very good agreement between the technetium-99 and uranium-238 concentrations found in
the actual porewater obtained using the UFA and the dilution corrected sediment-water extracts in all
regions and lithologies.
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Table 4.5. Calculated and Actual Porewater Radionuclide Composition for Water Extracts

of Sediment from 299-E33-46. (3 Pages)

ID Depth Dilution Corrected Porewater Concentrations
(ft bgs)” Dil. Fac. Technetium-99 Uranium- | Strontium-

238 90

pCi/L pg/L pCi/L
Backfill

02B-UFA 12.94 1 <1000 * 32.2° NA
02A 13.7 27.8 <10000° 27° <9000

06B-UFA 20.62 1 <1000° 25.4° NA
06A 21.12 20.66 <10000° 247 <9000
10A 29.42 30.33 <10000 15 <9000

Hanford H2 Sand (upper sequence) Unit

16A 41.72 25.18 <10000 22 <9000
17A 44.02 21.29 <10000 21 <9000
18A 46.42 18.75 <10000 35 <9000

20B-UFA 50.12 1 (1.35E+03) 39.7 NA
20A 50.62 29.43 <10000 70 ° <9000
21C 52.02 29.45 (3496) 63° <9000

21A-UFA 53.02 1 (1.12E+04) € 93.6® NA
21A 53.02 20.75 <10000° 69 <9000
21A-dup 53.44 19.42 <10000° 66 <9000
22 54.6 22.75 (3859) 597° <9000
24 56.7 19.05 (3231) 632° <9000
25 58.4 19.92 (3040) 175° <9000
26C 59.72 19.45 (2968) 148° <9000
26C-dup 59.72 22.74 (3085) 180° <9000
26-A 60.72 24.5 (2493) 560° <9000
27 62.1 23.78 (2823) 842° <9000
29 66.05 24.84 (3370) 2056° <9000
31C 69.45 28.74 (5849) 9714° <9000
31B 69.95 23.92 (5275) 9731° <9000
31A 70.45 20.8 <10000 8510° <9000
31A-dup 70.45 27.03 <10000 10946° <9000
33 73.5 25.04 (2972) 2703° <9000
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Table 4.5. Calculated and Actual Porewater Radionuclide Composition for Water Extracts

of Sediment from 299-E33-46. (3 Pages)

ID Depth Dilution Corrected Porewater Concentrations
(ft bgs)” Dil. Fac. Technetium-99 Uranium- | Strontium-
238 90
pCi/L pg/L pCi/L
35 77.35 15.03 (2039) 1351° <9000
36C 79.45 21.67 (2940) 1847° <9000
36A-UFA 79.95 1 (2.03E+03)* 638% NA
36A 79.95 22.85 (11627)° 2161% <9000
38C 82.05 24.7 (2933) 3547 <9000
38A-UFA 83.05 1 (3.55E+03)" 1215 NA
38A 83.05 19.64 (19315)° 3425 <9000
Background Upper H2 Sand <10000 6to9
Thin Fine Grained Lens
39 84.55 5.17 (1314) 312° <9000
39-dup 84.55 5.41 (1467) 270° <9000
Hanford H2 Sand (middle sequence) Unit
41 87.85 27.98 (4271) 40 <9000
42A 90.62 35.28 <10000 160° <9000
46 96.8 31.85 (3781) 836° <9000
47A 98.62 45.97 <10000 580° <9000
52 109 28.4 (8669) 98° <9000
53A 111.42 38.76 (657) 150° <9000
57TA 119.92 47.96 <10000 141° <9000
64A 131.85 32.15 (91071) 31 <9000
69A 140.05 39.7 (30970) 33 <9000
74A 150.15 23.41 (15088) 32 <9000
79A 160.15 19.54 (15576) 26 <9000
82A 164.55 29.22 (36181) 43 <9000
83A 166.85 29.95 (40382) 34 <9000
Background Middle H2 Sand <10000 7 to 24
Fine Grained Lens
84-UFA 168.45 1 3.90E+04 ™ 32.3° NA
84 168.45 11.44 31438 18° <9000
Background Fine Grained Lens <10000 7 to 10
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Table 4.5. Calculated and Actual Porewater Radionuclide Composition for Water Extracts

of Sediment from 299-E33-46. (3 Pages)

ID Depth Dilution Corrected Porewater Concentrations
@
(ft bgs) Dil. Fac. Technetium-99 Uranium- | Strontium-
238 90
pCi/L pg/L pCi/L
Hanford H2 Sand Unit
86A 171.15 18.85 (23013) 33 <9000
Hanford H3 Sand Unit
90A 179.85 22.89 (24454) 27 <9000
96A 190.8 41.31 (129618) 24 <9000
101A 200.95 34.06 (164075) 19 <9000
105C-UFA 208.95 1 1.25E+05 11.5° NA
105A 209.95 26.84 (55542)™ 17° <9000
Background H3 Sand <10000 8to13
Plio-pliestocene Mud Unit
109A 219.45 23.01 (89756) 17 <9000
110B-UFA 221.65 1 3.09E+04 22.4 NA
110A 222.05 3.85 89755 5 <9000
110A-dup 222.05 3.85 84523 4 <9000
113-UFA 225.9 1 2.30E+05® 9.0° NA
113 225.9 6.67 39832 5° <9000
Background PPlz <10000 2to10
Plio-pliestocene Gravel Unit
115A 230.75 27.17 (21656) 12 <9000
120B 240.95 28.68 (11189) 13 <9000
120A 241.45 39.95 <10000 20 <9000
123A 245.75 30.01 (20867) 10 <9000
127A 253.15 31.57 <10000 12 <9000
Background PPIg <10000 15

M'to convert to meters multiply by 0.3048
*UFA squeezing vs. calculated porewater comparisons
® Zones with elevated concentrations in comparison with the nearby uncontaminated sediment

(uncontaminated ranges shown in BOLD)

NA = not analyzed

()= values in parentheses are below quantitation limit but above the detection limit and thus considered

useful




4.2.5 Porewater Solute Ratios

Besides plotting individual constituent porewater profiles versus depth, we calculated ratios of some
of the major constituents in strontium recovery waste, which as discussed in the B-BX-BY FIR section
3.2.2.4 is the best guess as to the type of waste that was lost from piping associated with tank B-110. The
best, yet incomplete, estimate of the chemical composition of strontium recovery waste is shown in
Table 4.6, which is taken from Table 3.8 in the B-BX-BY FIR and originally from Larson 1967. The
ratios for several key parameters in Larson’s estimate are shown in Tables 4.7 and 4.8. These ratios have
the units of pCi/mg for the technetium-99 to fluoride or other chemicals and mg/mg for the ratios of
various chemicals to each other, excepting ratios with uranium that has units of pg.

The dilution corrected porewaters in general do not appear to be of the same composition as this
estimate for strontium recovery waste. The technetium-99 concentrations found in the porewaters are
generally much lower than those that should be found in strontium recovery waste. Compared to the
fluoride found in the porewater, both the technetium-99 and nitrate are too low based on Larson’s
estimates of the chemical composition of strontium recovery waste. Based on the sodium to fluoride
ratios in the porewater, there is too little sodium by a factor of 2 to 4 in the zone where both chemicals are
at their highest concentrations (from 15 to 25 m [50 to 83 ft] bgs). Two explanations are that the sodium
is reacting with the sediments (adsorbing onto cation exchange sites) while fluoride does not interact as
much or the Larson estimate may overestimate the sodium concentration in the waste stream. The sodium
to fluoride ratio does approach Larson’s ratio over the depth of 90 to near the bottom of the H2 sand unit
at 51 m (168 ft) bgs, above the fine-grained thin lens of silt. The bicarbonate to fluoride ratio in the
porewater is much higher than Larson’s estimate for strontium recovery waste excepting between 21 and
26m (70 and 85 ft) bgs where the ratio agrees with the estimate. The sediment and the vadose air are
large sources of inorganic carbon besides the waste stream so that one might expect the environment to
dominate the ratio moreso than the waste stream. In Tables 4.7 and 4.8, the porewater ratios that are
reasonably close to the Larson estimate for strontium recovery waste are shown in red type. Most of the
porewater samples do not have ratios that are very close to the strontium recovery waste. However, as
discussed in the B-BX-BY FIR the other waste streams considered are even further out of sync with the
measured porewaters from borehole 299-E33-46. We agree with the summary statement made in the FIR:

“Neither the volume nor the waste type is well understood for the borehole placed near B-110.
Soils analysis data from borehole 299-E33-46 indicate a waste stream vich in strontium-90,
fluoride, and bicarbonate. Historical records suggest a plausible waste stream derived from
strontium recovery waste from dissolved PUREX fuel as opposed to an initial conclusion
(Jones et al. 2001) that the waste was a cesium recovery waste similar to that released by the tank
BX-101 pump pit leak.”

One method to evaluate vertical migration of mobile contaminants from the B-110 release would be
to plot ratios of the key contaminants versus nitrate or some other conservative (non-sorbing) constituent
in the leaked fluid. If tank liquor dilution with extant porewater, potable water line leaks, or recharge
water were the only reasons for the decrease in concentrations for all the mobile constituents, then the
ratios of one to another should remain constant from the source to the furthest extent of migration as long
as the diluting water did not contain the mobile constituents.
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Table 4.6. Strontium-90 Recovery Waste Streams from Zirconium-Clad Fuel

Chemical / Radionuclide (M) Concentration Chemical / Radionuclide Concentration
Sodium 33 Phosphate (M) <0.003
Aluminum 0.0305 Total Carbonate (M) 0.8©
Iron <0.1 Fluoride (M) 0.10
Chromium 0.00545 HEDTA (M) 0.52
Hydrogen ® Hydroxyacetic acid (M) 0.25
Hydroxide ® Cs-137 (Ci/gal) Assumed ~2
Nitrate 3.1-4.0 Sr-90 (Ci/gal) 0.43
Nitrite NR Tc-99 0.00042 M
Sulfate <1.8 pH® ~10 (assumed)

@ Data in this includes the 1AW data from Table 11 of Larson 1967

® Assumed waste stream neutralized to pH ~10 with sodium carbonate.

© Assumed sodium carbonate used to neutralize HEDTA, AcOH, and initial acid.
Reference: Larson 1967, “B Plant Phase III Flowsheets”, ISO-986.
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Figure 4.5 Radionuclide Pore Water (calculated from sediment-to-water extracts), UFA and
Suction Candle Porewaters and Groundwater for 299-E33-46 Borehole Sediment
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Table 4.7. Ratio of Major Strontium Recovery Waste to Fluoride Found in Dilution Corrected
1:1 Water to Sediment Extracts

ID Depth NO;,/F *Te/F Na/F SO4/F HCOy/F
(ft bgs)"” (mg/mg) (pCi/mg) (mg/mg) (mg/mg) (mg/mg)
Strontium Recovery Waste
Stream 114 3.71E+05 39.9 75.8 25.68
Backfill
02A 13.70 0.74 0 39.2° 10.4 130.95
06A 21.12 0.6 0 24.2 10.0 110.35
10A 29.42 0.58 0 322° 71.2° 64.00
Hanford H2 Sand (upper sequence) Unit

16A 41.72 0.6 0.0 353 14.4 102.69
17A 44.02 0.76 0.0 33.6 13.1 101.29
18A 46.42 0.35 0.0 14.0 3.9 42.19
20A 50.62 0.13 0.0 21.3 1.9 51.43
21C 52.02 0.23 49.7 28.2 1.4 83.32
21A 53.02 0.09 0.0 27.2 2.2 59.03
21A-dup 53.44 0.10 0.0 25.9 1.9 54.27
22 54.60 0.72 24.2 16.8 0.7 45.33
24 56.70 0.75 15.7 15.5 1.2 35.90
25 58.40 0.85 22.4 18.1 0.9 51.20
26C 59.72 0.29 25.7 20.1 0.9 53.78
26C-dup 59.72 0.31 22.9 20.5 0.9 58.81
26-A 60.72 0.10 14.9 21.0 1.0 45.03
27 62.10 0.54 17.2 17.4 0.8 50.85
29 66.05 0.69 23.2 12.9 1.6 36.25
31C 69.45 1.51 35.5 13.5 1.4 36.23
31B 69.95 0.37 27.9 9.8 1.1 25.56°
31A 70.45 0.39 0.0 11.5 1.1 21.08°
31A-dup 70.45 0.31 0.0 11.2 1.1 21.98°
33 73.50 0.48 17.4 10.2 1.0 31.16°
35 77.35 0.69 19.1 10.4 1.3 30.65°
36C 79.45 0.12 18.6 10.3 1.2 29.80°
36A 79.95 0.07 68.3 11.0 1.2 23.58*
38C 82.05 0.06 13.8 8.7 0.8 24.37°
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Table 4.7. Ratio of Major Strontium Recovery Waste to Fluoride Found in Dilution Corrected
1:1 Water to Sediment Extracts

ID Depth NO;,/F *Te/F Na/F SO4/F HCOy/F
(ft bgs)"” (mg/mg) (pCi/mg) (mg/mg) (mg/mg) (mg/mg)
38A 83.05 0.05 112.42 9.6 0.9 17.74
Thin Fine Grained Lens
39 84.55 5.38 40.44 11.1 2.9 25.51°
39-dup 84.55 5.55 43.80 11.2 3.0 26.17%
Hanford H2 Sand (middle sequence) Unit
41 87.85 13.26 144.5 27.6 4.8 62.57
42A 90.62 4.03 0.0 271 4.4 56.49
46 96.80 2.27 65.4 32.3° 2.0 100.65
47A 98.62 0.24 0.0 39.7° 4.2 81.58
52 109.00 16.21 296.1 60.3° 7.7 137.77
53A 111.42 5.40 16.6 73.8° 6.8 137.02
STA 119.92 9.90 0.0 92.5° 12.0 171.41
64A 131.85 90.64° 5664.7 75.3° 25.2 103.19
69A 140.05 17.70 1560.3 49.4° 16.4 125.77
T4A 150.15 23.30 1288.9 59.6° 17.1 126.58
T9A 160.15 30.38 1594.2 58.0° 20.2 118.11
82A 164.55 34.84 2476.2 53.2° 17.1 116.80
83A 166.85 32.06 2696.7 47.8° 16.4 106.52
Fine Grained Lens
84 ‘ 168.45 88.24° 6851.7 70.8° 30.5 129.80
Hanford H2 Sand Unit
86A ‘ 171.15 13.98 2442.3 69.9° 18.3 162.47
Hanford H3 Sand Unit
90A 179.85 2.58 2137 38.0° 17.0 116.00
96A 190.80 8.11 5061 15.6 12.1 68.55
101A 200.95 11.46 9633 28.3 13.3 89.17
105A 209.95 3.83 2523 19.2 9.8 59.51
Plio-pliestocene Mud Unit
109A 219.45 3.20 5494 22.6 12.6 88.72
110A 222.05 50.44 35282 53.5° 57.9 153.48
110A-dup 222.05 48.57 31782 47.8° 50.5 138.92
113 225.90 34.09 10474 36.1° 48.6 130.64
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Table 4.7. Ratio of Major Strontium Recovery Waste to Fluoride Found in Dilution Corrected
1:1 Water to Sediment Extracts

ID Depth NO;/F *Tc/F Na/F SO.4/F HCO,/F
(ft bgs)"” (mg/mg) (pCi/mg) (mg/mg) (mg/mg) (mg/mg)
Plio-pliestocene Gravel Unit

115A 230.75 0.51 848.0 13.3 10.5 63.95
120B 240.95 0.00 711.8 32.6° 31.6 110.86
120A 241.45 0.42 0 18.5 13.2 51.92
123A 245.75 3.14 1390.74 26.7 27.9 93.99
127A 253.15 3.04 0 33.6° 15.7 114.58

W to convert to meters multiply by 0.3048
*Samples whose ratios are consistent with being Strontium Recovery Waste

The porewater ratios of the key waste constituents versus each other are shown in Table 4.8 and
Figures 4.6 through 4.9. These ratios have the units of pCi/mg for the technetium-99 to any stable
chemical and pg/mg for the uranium to other stable constituents, and mg/mg for chemicals versus each
other. For the ratios where technetium or uranium are in the denominator the units are the reciprocal of
those just stated. We also show the ratios for the strontium recovery waste stream (where available) that
are plausible sources of the vadose zone contamination. The data for the waste streams are taken from
Table 4.6 that is taken from Larson 1967.

None of the porewater ratios listed in Table 4.8 are close to the values for strontium recovery waste
and more importantly none of the ratios for suspected mobile contaminants such as technetium-99, nitrate,
and to lesser extents sodium, uranium, and sulfate to each other show a constant ratio over the depth
ranges in the profile where elevated concentrations are found. About the only useful observation is that
the porewater ratio of sodium to technetium (sodium/technetium) is significantly lower below 37 m
(120 ft) than in the shallower sediments. Because the bulk of the tank related fluid seems to still reside in
the zone between the tank bottom and 37 m (120 ft) bgs, and the fact that sodium does react with the
sediments to a limited extent, the ratio should drop deeper in the profile where the small amount of
technetium seems to reside either carried down deeper or brought in from another leak source.

Thus unlike the ratios for porewaters from the SX borehole, we do not see definitive signs that
wastes are migrating vertically in unison with each other. It is likely that the low absolute concentrations
of constituents such as technetium-99 and relatively low concentrations of nitrate and uranium found in
the borehole 299-E33-46 porewater cause the ratio approach to be compromised by analytical error. This
makes it difficult to show that several contaminants are traveling essentially in concert with each other
through the vadose zone sediments even though we suspect that technetium-99 and nitrate do migrate
essentially un-retarded through the vadose zone sediments. The waste that was lost in the vicinity of tank
B-110 did not contain significant amounts of either technetium-99 or nitrate or for that matter uranium,
sulfate, or sodium compared to other tank leaks or overfills studied to date.

4.36




There is also a zone below 55 m (180 ft) bgs to the water table where the technetium-99-to nitrate
ratio ranges about 10 times higher than the ratios for porewaters above 55 m (180 ft) bgs. This change in
technetium-99 to nitrate ratio might be explained by two different sources for the water that carries the
contaminants. As stated previously the technetium to nitrate ratios for the strontium recovery waste do
not correspond to the values found in the calculated porewaters. The observed values for the
technetium/NOj ratio are significantly lower than the Larson estimate. The ratios for technetium-99-to-
nitrate, uranium-to-nitrate, uranium-to-technetium are plotted in Figure 4.7 and 4.8 for the dilution
corrected porewaters, ultracentrifuged porewaters, and groundwater as a function of depth.

The technetium-99 to nitrate ratio for the groundwater at 78 m (255.8 ft) bgs is 111 pCi/mg; a value
considerably lower than for the porewater in the deep vadose zone of borehole 299-E33-46. This
suggests that there may be a source of water that contains nitrate but not technetium in the groundwater.
Overall, the ratio approach, where the main contaminants from the leaking tank are ratioed against each
other, does not give a clear picture on the geochemistry of the vadose zone or the type of waste stream
that leaked from the piping infrastructure associated with B-110. Part of the problem is that the
porewaters at borehole 299-E33-46 are not very concentrated in chemicals in general, and the natural
porewaters have most of the same chemicals at concentrations only 10 to 50 times less concentrated.
These facts limit the usefulness in the ratio approach that was of much more value in interpreting the
porewater data at the SX tank farm (see Serne et al. 2002b, c, and d.)

4.37



6e'8 a4 96'v¥ 9T'S 15€°0 SP8'l 9t 8¢1 L'vL $6°69 di¢
L6 9'6C 14 X44 LEY 08¢0 099°'1 S6'8 76¢ 9'¢C Sv'69 JlE
8C'8 6'vl 806 'l 9660 019°0 6'81 L0t 6'¢e §099 6¢
§'1c (A4 €€9 620 S10°1 86C°0 43 9°6 (43 0129 LT
¥'1c Sl e 910 90¥°1 §TT0 L0T I'ee Lyl L 09 V-9¢
9'¢C £'9¢ €51 L0°0 9680 8500 99 (9% LTL CL'6S dnp-D97
§'1c §'LT LE1 900 18L°0 050°0 769 (474 % 9'88 L'6S D9¢
(A4 £'9¢ 161 L0°0 L080 LS00 (A4 161 £9¢ 0¥'8S 4
¢el LCl Ly'C 0 8860 s61°0 9°0¢ 80'Y 6'0¢ 0L'9§ ¥C
¥'eT L'ee 1T¢ (440 ¥69°0 SS1o ¥'eT s L'ee 09°'vS (44
8¢l 0 6¥°0 00 Ay AUy 1s¢ 76'8 0 yres dnp-v1¢
9'Cl 0 €r'0 €0°0 Al oqup 06¢ €8°6 0 0°¢s VIC
861 6'v¢ €9°0 €0°0 8960 810°0 (44! 88°¢ SIc 0°Cs DIT
€1l 0 Svo 00 AUl oup 91 859 0 79°0¢ vO0¢
€9°¢ 0 LEO o AUl oup 6'6¢ Y0¥ 0 wor V8l
9¢'C 0 S1o 90°0 Al oup (4747 9¢'C 0 [4\ha% VLI
Sv'e 0 cro S0°0 Al oup 8'8¢ €6'C 0 Ly Vol
nup) (2ouanbas 1addn) pung 7y p1ofuvy|
2 SV0 0 10°0 00 AUl oqup 9°¢¢ 8C'1 0 6T VoI
w'e 0 €0 o Raur oup 0P 68°¢ 0 e V90
9L’¢ 0 610 S0°0 Al oqup 6'CS 19°C 0 0L ¢l V20
nyyorg

LTS0 €0+H06'% Aun Aun ¥0-d80°1[ Aun Seo0 Aun €0+dST€ AseM 011-9

Sw/Suwx Swi/1Hd Sw/3nl Sw/3nl 1Dd/3w 1Dd/3r Sw/3w Sw/3nl Swi/iHd o™

"OS/eN YOS/ L 'Os/Nn BN/N dL/BN dLe/N *ON/EN fON/N FON/P L pdaq ar

YO YO SNSIIA SPPBIXT J9JBAN 1] P3I99.110D) UONN[I(] Ul SHUINISUO)) JO oy ‘8% dqeL

4.38



L8'T 8'8L €ro S0°0 9¢0°0 2000 16'1 600 §'es S1°091 VoL
8¥°¢ €SL 91°0 S0°0 9%0°0 2000 9¢'C Lo (Y9 S1°0S1 VL
10°¢ 166 10 €00 €00 100°0 6L'C 600 7’88 SO'0v1 V69
86'C 144 80°0 €00 €100 0000 £8°0 00 §79 ¢8'1¢l V9
YL'L 0 870 90°0 Ay oup SE'6 860 0 6611 VLS
601 9T 950 S0°0 Iev'y LTTO Lel Lo I'e [4 418! Ves
S8°L 9'8¢ 70 900 €0T0 110°0 L 120 €81 00°601 (43
§S°6 00 (44 20 AUl oup €91 6¢ 0 79'86 VLiy
191 L'TE L Svo £6v'0 1220 eyl ¥9 6'8¢ 0896 9¥
809 00 Lo o Al oqup L9 80 0 7906 Vi
6L'S ¥'0¢ 8C°0 S0°0 161°0 6000 80°C 10 601 G8°LS 8%
jup) (2ouanbas ajppnu) puvs 7H p1ofuvyy
eL'E Syl 89°C Lo LSTO ¥81°0 (44 Sv'l 68°L SSP8 dnp-6¢
LL'€E 8¢l LTE L8°0 YLT0 LETO 90°C 8L'1 IS°L SSP8 6¢
SUIT pouIp.LL) dul] Uty

L0l §'6tl §Tee 80°C §80°0 LLTO 81 6L ®3€1T S0°¢€8 V8¢
L0l I'L1 89°0C €61 8790 60T'1 4! L8T LET S0°C8 8¢
S6'8 8°¢¢ LEOT 91’1 091°0 9810 871 Ll §T6 S6°6L Vo¢
§9'8 961 86 el'l ¥SS°0 8790 0°S8 96 €61 St6L D9¢
S0'8 81l 6L°6 (44! 940 £99°0 'Sl €81 9°LT SELL 93
€0l S'LI L8'S1 ¥S'1 065°0 016°0 (S 4 cee §'9¢ 0S°€L 33
9°01 0 Sl'ev €9'Y Ay Paur L'S¢ S91 0 SYoL dnp-v1¢
101 0 S9'9¥ €9'Y AUl oqup €'6¢ Sel 0 StoL VIig

Sw/Suwx Swi/1Hd Sw/3nl Sw/3nl 1Dd/3w 1Dd/3r Sw/3w Sw/3nl Swi/iHd o™

"OS/eN YOS/ L 'Os/Nn BN/N dL/BN dLe/N *ON/EN fON/N FON/P L pdaq ar

YO YO SNSIIA SPPBIXT J9JBAN 1] P3I99.110D) UONN[I(] Ul SHUINISUO)) JO oy ‘8% dqeL

4.39



1404 00 S00 200 Uy Uy [ Yal] Uy SIese VLTI
96°0 6°'6v 200 200 6100 S000°0 16°8 120 194% SL'SPT Vveel
71 00 700 €00 Uy Uy [ VIl Uy Sy I¥C VOZI
€01 ¢ €00 €00 9%0°0 Paur Uy Uy Uy S6°0¥C d0¢1
LT 808 S0°0 700 9100 9000°0 1'9¢ €60 1991 SL'0ET VeIl
Jup) 124019 2uddopsand-og
L0 S1¢C €00 ¥0°0 €000 1000°0 90°1 700 LOE 06°5CC €l
S6°0 629 €00 700 2000 S0-d8sv 86°0 €00 59 §0°Cee dnp-vor1
60 609 €00 €00 2000 S0-dCL'S 90°1 700 669 §0°Cee VOITI
6L°1 9¢y 80°0 S00 ¥00°0 2000°0 90°L €0 8ILI Sy'6ltC V60l
nup) pnpy auaoopsayd-or |
S6'1 LST 80°0 700 800°0 £000°0 S 0 659 $6'60C VeSOl
er'e €CL 80°0 700 £00°0 1000°0 Ly'C 10 18 $6°00C VIOl
6C'1 LY 80°0 90°0 £00°0 2000°0 €61 [4N0) 79 08°061 V96
€C'C 9Tl y1°0 90°0 810°0 1100°0 Lyl 60 8¢8 S8'6LI V06
#up) puns sH pLofuvgy
18°¢ eel 61°0 S00 6200 ¥100°0 S al] SLI ST'ILT Vo8
#up) puvs gH profuvg
[44 1444 e€ro S0°0 010°0 §000°0 80 700 L'LL S¥'891 78
SUD'T pauInLD ULy
16°C 791 y1°0 S00 810°0 100°0 611 LO0 '8 68991 Ves
1T 94! LT°0 90°0 00 100°0 €Sl 80°0 'L SS9l V8
Sw/Suwx Swi/1Hd Sw/3nl Sw/3nl 1Dd/3w 1Dd/3r Sw/3w Sw/3nl Swi/iHd o™
"OS/eN YOS/ L 'Os/Nn eN/N IL4/EN AL/N *ON/EN fON/N FON/P L pdaq ar

YO YO SNSIIA SPPBIXT J9JBAN 1] P3I99.110D) UONN[I(] Ul SHUINISUO)) JO oy ‘8% dqeL

4.40



"POJRWIIISS 9q PINOJ Ol OU OS WNIUEIN JOJ SONJBA SABY] JOU PIP 9JEWNSI WIBALS d)SeM AIOA0II WINNUOLS O} = Nu()

“JUBUTIIONOPUL T8 SON[BA OS JIWI] UONO2IOP S MO0[eq Juasaid a1e SJusmiIisuod a3 Jo Yjoq Io U0 = U]

9IsEA\ AIOA00Y UMNUONS FUIQ SJOBHXD I0JeMm [IIM JUIISISUOD SLoney ,
8%0€°0 Aq AJdnnu s1930w 03 119AU0J 0} o

Su/Sm
"OS/eN

Su/iHd
POS/ALq

Sur/3ni
'os/n

Sur/3n
eN/N

1Dd/3ur
OL,s/eN

10d/3
AL/N

Su/Sm
*ON/EN

Su/3ni
fON/N

Su/iHd
SON/ALg,

o)
pdaq

al

YO YO SNSIIA SPPBIXT J9JBAN 1] P3I99.110D) UONN[I(] Ul SHUINISUO)) JO oy ‘8% dqeL

4.41



"SJUAWIPAS 9~ €H-66¢ 10J IPLION]] SNSIOA SIUSMIISUO)) IOJ SONBY I0IBMIIO *9°{ IN3L]

4.42



Figure 4.7. Porewater Ratios for Uranium and Sodium to Other Species.
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Figure 4.8. Porewater Ratios for Key Constituents versus Each Other
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Figure 4.9. Porewater Ratios for Key Constituents versus Chloride.

4.45



4.3 Radionuclide Content in Vadose Zone Sediment

The sediment cores from 299-E33-46 posed no worker dose challenges (did not contain much
gamma radioactivity aside from bremsstrahlung radiation between 14 and 27 m [46 and 89 ft] bgs). The
radioanalytical analyses performed on the sediment included direct gamma energy analysis and tritium
analysis of the one to one sediment to water extracts (assumed to be equivalent to the standard distillation
of tritium out of the sediment and condensation on special targets). The technetium-99 and uranium-238
contents of the strong acid extracts were analyzed by ICP-MS to represent the total Hanford contribution
to the sediments. The strontium-90 content of the sediments was determined by strong acid extraction
followed by liquid scintillation counting. The strontium-90 content of the sediment to water extracts was
determined by liquid scintillation with any further wet chemical separation because there was no other
beta emitters present that could have interfered. The only Hanford derived radionuclides found in the
sediments from 299-E33-46 were uranium, strontium-90, technetium-99 and tritium.

4.3.1 Gamma Energy Analysis

The GEA radionuclide content of the sediment is shown in Table 4.9. Potassium-40 was the only
isotope quantitated in the profile, but the bremsstrahlung radiation was observed between the depths of 14
and 27 m (46 and 89 ft) bgs as evidenced by the higher detection limit for uranium-238 shown in
Table 4.9. The uranium-238 activity was below the GEA detection limit for the entire vadose zone
profile suggesting low concentrations are present. No detectable gamma emitting fission products such as
cesium-137, europium-152, europium-154, antimony-125, or the activation product Cobalt-60, that are
often observed in the field logging of the dry boreholes around Hanford’s single shell tanks were
observed in the sediments. Detection limits for these commonly found isotopes in the laboratory
measurements varied from 0.2 to 0.6 pCi/g dependent on isotope. The vertical distributions of uranium
and potassium-40 in the vadose zone sediment are plotted in Figure 4.10. Neither profile is noteworthy
for delineating any zones of contamination excepting the zone with bremsstrahlung radiation that
interferes with measuring the uranium-238, which is based on measuring its daughter thorium-234.

The potassium-40 distribution is somewhat featureless. There are no signs of elevated potassium-40
in the fine-grained lens within the Hanford formation sediments. At most we note a slightly increased
concentration of potassium-40 in the Plio-Pleistocene silts, PPIz unit, in comparison to the shallower H3
unit and deeper Plio-Pleistocene gravelly sands (PPlg).

4.3.2 Strontium-90 Content of Sediment from 299-E33-46

Table 4.10 and Figure 4.11 show the distribution of strontium-90 in the vadose zone sediments from
borehole 299-E33-46. Strontium-90 is considered to be the primary radionuclide released from tank
B-110 transfer line and is concentrated in the sediment between 19 and 28 m (62 and 83 ft) bgs at
concentrations between 1,000 and 11,250 pCi/g. There is some strontium-90 as shallow as 14. 2 m
(46.5 ft) bgs with 600 pCi/g concentration and the bottom of the plume lies between 27 and 33 m (89 and
111 ft) bgs where the concentrations range between 20 and 70 pCi/g. As shown in Table 4.5, the
strontium-90 in the sediments is not readily water leachable with distilled water after several hours
contact. In general, the water leach and total acid leachable strontium in the vadose zone sediments
suggest that the in-situ desorption K, value is >100 ml/g for the diluted 1:1 sediment to water extract
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solution. More detailed studies on the leachability of the strontium-90 in these sediments is found in
Appendix D2.4 of the B-BX-BY Field Investigation Report, where it is shown that the desorption of
strontium-90 is highly dependent on solution composition and contact time. Simply stated, the strontium-
90 present in the vadose zone sediments between 14.2 m and 33 m (45.6 and 111 ft) bgs is not currently
mobilized by dilute vadose zone recharge waters.

Table 4.9. Gamma Energy Analysis of Vadose Zone Sediment from Borehole 299-E33-46.

Sample Depth Uranium-238 Potassium-40 + Uncertainty
ID (fo® (GEA)
(ng/g) (pCi/g)
Backfill
02C 12.18 <11.6 1.454E+01 7.568E-01
02B 12.94 <11.6 1.426E+01 1.522E+00
02A 13.7 <10.8 1.417E+01 1.338E+00
06D 19.62 <12.1 1.484E+01 1.512E+00
06B 20.62 <11.0 1.024E+01 6.651E-01
06A 21.12 <114 1.248E+01 7.098E-01
10C 28.42 <115 1.083E+01 1.457E+00
10B 28.92 <11.8 1.224E+01 1.400E+00
10A 29.42 <14.1 1.596E+01 2.076E+00
Hanford H2 Sand (upper sequence) Unit
16D 39.97 <143 2.039E+01 1.074E+00
16C 40.72 <139 1.789E+01 1.892E+00
16B 41.22 <12.6 1.689E+01 8.790E-01
16A 41.72 <159 2.241E+01 2.681E+00
17D 42.52 <124 1.346E+01 1.569E+00
17C 43.02 <129 1.993E+01 1.728E+00
17B 43.52 <18.0 2.763E+01 3.180E+00
17A 44.02 <16.2 1.801E+01 2.069E+00
18D 44.92 <13.6 1.934E+01 1.763E+00
18C 45.42 <222 2.041E+01 1.166E+00
18B 45.92 <223 1.879E+01 1.939E+00
18A 46.42 <33.5 1.797E+01 1.605E+00
20D 49.12 <934 2.170E+01 1.353E+00
20C 49.62 <45.7 1.745E+01 1.856E+00
20B 50.12 <88.9 2.100E+01 1.019E+00
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Table 4.9. Gamma Energy Analysis of Vadose Zone Sediment from Borehole 299-E33-46.

Sample Depth Uranium-238 Potassium-40 + Uncertainty
ID (ft)™ (GEA)
(ng/g) (pCi/g)

20A 50.62 <81.6 1.786E+01 2.229E+00
21D 51.52 <50.1 1.867E+01 1.797E+00
21C 52.02 <72.1 1.940E+01 1.452E+00
21B 52.52 <63.2 1.766E+01 2.373E+00
21A 53.02 <88.4 1.996E+01 9.725E-01
26D 59.22 <95.1 1.876E+01 2.529E+00
26C 59.72 <79.6 1.636E+01 1.698E+00
26B 60.22 <83.1 1.986E+01 9.383E-01
26-A 60.72 <101.2 1.642E+01 2.655E+00
31D 68.95 <38.6 2.015E+01 2.036E+00
31C 69.45 <34.6 2.084E+01 1.734E+00
31B 69.95 <46.3 1.929E+01 2.547E+00
31A 70.45 <39.0 1.786E+01 1.704E+00
36D 78.95 <64.1 1.782E+01 2.330E+00
36C 79.45 <48.7 1.645E+01 9.125E-01
36B 79.95 <40.1 1.713E+01 1.547E+00
36A 80.35 <48.5 1.526E+01 2.281E+00
38D 81.55 <324 1.697E+01 9.172E-01
38C 82.05 <33.5 1.952E+01 1.850E+00
38B 82.55 <36.3 1.979E+01 2.307E+00
38A 83.05 <34.7 1.913E+01 2.678E+00

Thin Fine Grained Lens

No sample was analyzed

Hanford H2 Sand (middle sequence) Unit
42C 89.62 <15.5 1.665E+01 2.359E+00
42B 90.12 <13.0 1.728E+01 1.782E+00
42A 90.62 <114 1.650E+01 1.235E+00
47C 98.62 <13.0 1.749E+01 1.790E+00
47B 99.12 <10.7 1.719E+01 1.227E+00
47A 98.62 <14.8 1.669E+01 1.092E+00
53D 109.92 <12.7 1.672E+01 8.839E-01
53C 110.42 <12.4 1.754E+01 1.534E+00
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Table 4.9. Gamma Energy Analysis of Vadose Zone Sediment from Borehole 299-E33-46.

Sample Depth Uranium-238 Potassium-40 + Uncertainty
ID (fo® (GEA)
(ng/g) (pCi/g)

53B 110.92 <153 1.847E+01 2.157E+00

53A 111.42 <11.8 1.918E+01 1.435E+00

57A 119.92 <15.6 1.468E+01 2.465E+00

62 126.75 <15.0 Not Reported

64A 131.85 <12.5 1.681E+01 1.754E+00

69A 140.05 <11.6 1.665E+01 8.341E-01

74A 150.15 <15.1 1.701E+01 1.973E+00

79A 160.15 <14.8 1.713E+01 1.819E+00

82A 164.55 <12.9 1.863E+01 9.431E-01

83A 166.85 <13.7 1.634E+01 1.907E+00
Fine Grained Lens

86A 171.15 <123 1.655E+01 8.635E-01
Hanford H3 Sand Unit

90A 179.85 <14.8 1.574E+01 1.086E+00

96A 190.8 <12.8 1.424E+01 1.646E+00

101A 200.95 <10.5 1.475E+01 7.331E-01

105A 209.95 <15.2 1.425E+01 1.042E+00
Plio-pliestocene Mud Unit

109A 219.45 <133 1.515E+01 8.835E-01

110A 222.05 <14.9 1.869E+01 1.763E+00
Plio-pliestocene Gravel Unit

115A 230.75 <135 1.671E+01 1.960E+00

120A 241.45 <10.9 1.122E+01 6.808E-01

123A 245.75 <09.8 1.507E+01 6.876E-01

127A 253.15 <14.9 1.305E+01 1.839E+00

W to convert to meters multiply by 0.3048
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Table 4.10. Total Radionuclide Content of Vadose Zone Sediments from

Borehole 299-E33-46

ID Depth Technetium-99 Uranium-238 Strontium-90
(ft bgs)"” (pCi/g) (ng/g) (pCi/g)
Backfill
02A 13.70 (1.45E+00) <10.8 1.07E+01
06A 21.12 NA <114 NA
10A 29.42 (1.46E+00) <14.1 6.57E+00
Hanford H2 Sand (upper sequence) Unit
16A 41.72 (3.73E+00) 33 2.72E+00
17A 44.02 NA <16.2 2.13E+01
20A 50.62 (1.57E+00) NA 6.34E+03
21C 52.02 (3.76E+00) NA 7.857E+03
21A 53.02 (8.09E+00) NA 5.93E+03
21A-dup 53.44 (2.57E+00) NA 7.80E+03
22 54.60 (3.77E+00) NA 6.533E+03
24 56.70 (5.18E+00) NA 1.096E+04
25 58.40 (4.62E+00) NA 8.559E+03
26C 59.72 (4.99E+00) NA 9.517E+03
26C-dup 59.72 (4.56E+00) NA 8.341E+03
26-A 60.72 (3.58E+00) 12.9 1.05E+04
27 62.10 (4.97E+00) NA 1.125E+04
29 66.05 (4.58E+00) NA 7.760E+03
31C 69.45 (4.74E+00) NA 1.603E+03
31B 69.95 (5.43E+00) 13.5 NA
31A 70.45 (2.64E+01) NA 1.57E+03
31A-dup 70.45 (2.58E+01) NA NA
33 73.50 (5.75E+00) NA 5.467E+03
35 77.35 (4.52E+00) NA 5.053E+03
36C 79.45 (4.70E+00) NA 3.399E+03
36A 79.95 (1.42E+01) NA 2.21E+03
38C 82.05 (4.61E+00) NA 1.811E+03
38A 83.05 (2.19E+01) NA 6.89E+02
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Table 4.10. Total Radionuclide Content of Vadose Zone Sediments from

Borehole 299-E33-46

ID Depth Technetium-99 Uranium-238 Strontium-90
(ft bgs)"” (pCi/g) (ng/g) (pCi/g)
Thin Fine Grained Lens
39 84.55 (4.98E+00) NA 9.563E+02
39-dup 84.55 NA NA NA
Hanford H2 Sand (middle sequence) Unit
41 87.85 (3.63E+00) NA 5.281E+01
42A 90.62 (4.41E+00) 17.1 4.44E+00
46 96.80 (4.60E+00) NA 7.122E+01
47A 98.62 (4.74E+00) <14.8 1.54E+01
52 109.00 (3.75E+00) NA NA
53A 111.42 (1.40E+00) <11.8 2.58E+01
57A 119.92 (2.12E+00) <15.6 3.84E-01
64A 131.85 (3.04E+00) <12.5 5.96E+00
69A 140.05 (7.65E-01) <11.6 2.94E+00
74A 150.15 (3.12E+00) <15.1 5.39E+00
79A 160.15 (3.11E+00) <8.5 8.53E+00
82A 164.55 (1.52E+00) <12.9 1.99E+00
83A 166.85 (1.53E+00) <13.7 3.17E-01
Fine Grained Lens
84 ‘ 168.45 (7.18E+00) NA NA
Hanford H2 Sand Unit
86A ‘ 171.15 (3.02E+00) <8.8 3.35E+00
Hanford H3 Sand Unit
90A 179.85 (1.45E+00) <14.8 2.57TE+00
96A 190.80 (7.72E+00) <12.8 3.99E+00
101A 200.95 (7.72E+00) <8.4 1.66E+00
105A 209.95 (8.43E+00) <15.2 1.70E+00
Plio-pliestocene Mud Unit
109A 219.45 (9.93E+00) <133 1.35E+00
110A 222.05 5.22E+01 <7.8 2.50E+00
110A-dup 222.05 4.52E+01 NA 6.11E+00
113 225.90 (2.36E+01) 27.3 NA
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Table 4.10. Total Radionuclide Content of Vadose Zone Sediments from
Borehole 299-E33-46

ID Depth Technetium-99 Uranium-238 Strontium-90
(ft bgs)"” (pCi/g) (ng/g) (pCi/g)
Plio-pliestocene Gravel Unit

115A 230.75 (3.48E+00) <9 2.58E+00
120B 240.95 (4.69E+00) NA NA

120A 241.45 (7.26E-01) <10.9 8.37E+00
123A 245.75 (7.43E-01) <7.7 1.29E+01
127A 253.15 (2.40E+01) <14.9 3.96E-02

W to convert to meters multiply by 0.3048

(Values) are below quantification level but thought to be useful

NA = not analyzed; for U used XRF when available and GEA when XRF not available; High strontium-90 interfered
with uranium analysis.

As discussed in the B-BX-BY FIR section 3.2.2.4 and Appendix D2.2.3.1.3 it was originally thought
that the fluid that leaked from the transfer line contained a complexing agent NTA (nitrilo-triacetic acid or
trimethylaminetricarboxylic acid; C¢HoNOg). Data presented in Appendix D2.2.3.1.3 show that the
presence of NTA at 15 mmol/L in 0.015 mol/L NaHCO; background electrolyte, the approximate vadose
zone pore fluid in contact with the strontium-90 contaminated sediments, reduced the Sr*-K in B tank
farm composite sediment from approximately 56 ml/g to 3.16 ml/g. But when the NTA concentration
was lowered to 1.5 mmol/L, NTA had no effect on Sr** ion exchange adsorption in HCO; electrolyte. We
analyzed 1:1 sediment to water extracts from the zone of strontium-90 contamination for NTA using ion
chromatography. Results are shown in Table 4.11. We did not find any traces of water extractable NTA
in the water extracts but could readily measure, with 100% recovery, 16 ppm of NTA that was spiked into
the water extracts. The sensitivity of the ion chromatograph (IC) for determining NTA was very good.
The 16 ppm spike equals 8.4 X 10° mM about 2000 times below the concentration that was found to
impact the strontium adsorption-desorption Ky values. This suggests that there is no indication that water
soluble NTA is present today in the vadose zone where the strontium-90 contamination currently resides.
It has since been determined that the strontium recovery waste stream did not contain NTA as originally
thought so the results in Table 4.11 confirm the absence. As mentioned, using the water extract and acid
extract data we find the current in-situ desorption Ky for strontium-90 is greater than 100 mL/g.

Table 4.11. NTA Analyses for Selected 1:1 Sediment to Water Extracts From
Strontium-90 Contaminated Sediments. (2 Pages)

Sample Name Area

(arbitrary units)
NTA 16 PPM 1.332
21A--53.02 ft bgs 0.00
26A--60.72 ft bgs 0.00
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Table 4.11. NTA Analyses for Selected 1:1 Sediment to Water Extracts From
Strontium-90 Contaminated Sediments. (2 Pages)

Sample Name Area
(arbitrary units)

31A--70.45 ft bgs 0.00
36A--80.35 ft bgs 0.00
21A SPK 16 PPM NTA 1.326
26A SPK 16 PPM NTA 1.350
31A SPK 16 PPM NTA 1.339
36A SPK 16 PPM NTA 1.339
NTA 16 PPM I 1.269

Instrument was not Calibrated for NTA so results are area under curve where NTA eluted

Dr. Rick McCain, currently at S. M. Stoller, did a detailed analysis of the field gamma ray logging of
borehole 299-E33-46 through the zone where bremsstrahlung radiation was present with the laboratory
derived strontium-90 measurements on the sediments obtained by split spoon sampling. The details are
found in Appendix C. The goal was to determine if a simple empirical calibration factor between
bremsstrahlung signal (as quantified as counts in specified energy channels in the gamma log) and the
direct lab measurements of strontium-90 could be derived. As described in Appendix C, there is some
theory that can be used defend the concept. The results of the analyses were that a fairly strong
correlation was found between the bremsstrahlung signal and lab measured strontium-90 concentration
for borehole 299-E33-46 as shown in Figure 4.12 but the correlation value was not the same as theory.
The fact that the casing used to drive borehole 299-E33-46 was significantly thicker than the casings used
in the 1970s to install other dry well monitoring boreholes around the single-shell tanks was thought to be
key to the disagreement. The correlation between observed bremsstrahlung and actual strontium-90
concentrations in surrounding sediments is dependent on casing thickness and the distribution of
strontium-90 in the vadose zone sediments. The dependence of the gamma signal to these two factors,
casing thickness and contaminant distribution, is not well understood. Therefore the hope that some
general correlation between measured bremsstrahlung signal and actual vadose zone strontium-90
concentration has not been successfully demonstrated. Thus although there are other wells, especially in
the B Tank Farm that show characteristic bremsstrahlung signal it is not possible to determine accurately
the strontium-90 concentration because of the differences in casing thickness and unknown effect of
differing contaminant distributions. Several recommendations of additional activities that could be
pursued to further attempt to derive more general correlations between bremsstrahlung radiation and
quantifying strontium-90 are discussed in Appendix C.
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Figure 4.10. Uranium-238 and Potassium-40 Content in Sediment from Borehole 299-E33-46.
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Figure 4.11. Strontium-90 Content of Borehole 299-E33-46 Vadose Zone Sediments.
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Figure 4.12. Correlation Between Bremsstrahlung Signal (count rate between 60 and 350 kev) and
Actual Strontium-90 Concentration in Vadose Zone Sediments from Borehole 299-E33-46

4.3.3 Uranium Content in Sediment

Figure 4.10 shows the uranium content of the sediment using spectral gamma measurements.
Uranium concentrations in the sediment are not distinguishable from natural background but the zone
immediately below the bottom of the tank was not adequately measured because gamma energy analysis
was affected by the bremsstrahlung signal from the strontium-90 present in the sediments.

A second characterization that combined the results from measuring the total uranium content in the
sediments by three different methods is shown in Table 4.12 and Figure 4.13. The three methods are
1) measuring uranium-238 by the gamma emission from the short-lived thorium-234 daughter and
converting activity to mass; 2) directly measuring total uranium mass by x-ray fluorescence (XRF);
3) and performing the strong nitric acid extract and measuring the uranium-238 mass by ICP-MS. In
general, the agreement between the three methods was shown to be good at the BX-102 tank overfill
borehole (299-E33-45) where there was elevated uranium concentrations (see Serne et al. 2002¢).
However, at borehole 299-E33-46 where there is very little uranium, aside from natural background
levels, the acid extract data show much lower concentrations than the total uranium concentrations
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measured by GEA and XRF. This shows that the natural uranium is bound tightly in crystal lattice sites
in minerals that are only partially dissolved in the 8 M nitric acid extraction. Throughout the sediment,
acid extraction did not remove more than 3 pg/g of uranium. Such values are similar to the total
concentrations of uranium in uncontaminated sediments. The XRF data does suggest that two samples
have elevated uranium but the first one at 12.72 m (41.72 ft) bgs seems too shallow compared to the
depths where other chemicals suggest tank fluid resides. The second high value is at 68 m (222 ft) bgs in
the Plio-Pliestocene mud and could reflect natural uranium accumulation in the mud. Neither of these
two higher XRF values is supported by the less sensitive GEA analyses, therefore it is difficult to assess
whether there is any uranium in the sediments at borehole 299-E33-46 from Hanford activities.

However, the water extractable uranium values shown in Table 4.5 and Figure 4.5 suggest that there
is uranium from Hanford fuel reprocessing activities at low concentrations between the depths of 15.4 and
37 m (50.6 and 120 ft) bgs. The deepest penetration of Hanford-related uranium is down to the thin fine-
grained bed in the Hanford H2 unit at approximately 37 m (120 ft) bgs.

An indication of the present uranium mobility is calculated based on the ease of water extraction of
the uranium compared to the total uranium in the sediment. If one assumes that the dilution corrected 1:1
water extract is equivalent to the uranium content in the porewater, then an in-situ K4 value can be
calculated. Table 4.13 shows in-situ K4 values based on taking the best data for the total U in the dry
sediment and the calculated porewater concentrations from Table 4.5. In all cases the total uranium
measured also includes the uranium that was in the porewater such that a small correction should be made
for those samples where appreciable uranium is water leachable. Such corrections only affect a few of the
values in Table 4.13 and because most of the measured total uranium concentrations in the solid were less
than values, the Ky values shown represent the lowest values one should expect if only natural recharge
water was the mobilizing fluid in the future.

Table 4.12. Total Uranium Content in Vadose Zone Sediments Determined by Three Methods.

(3 Pages)
D Depth | GEA | XRF | Acid D Depth | GEA | XRF | Acid
(ftbgs) | (ng/p) | (ng/e) | (ng/g) (ftbgs) | (ng/g) | (ng/e) | (ng/e)
Backfill 36D 7895 | <641 | NA | 0.88
02C 12.18 <116 | NA | Na 36C 7945 | <487 | NA | 0.78
02B 12.94 <116 | Na | 047 36B 7995 | <401 | NA | NA
02A 13.7 <108 | NA | NA 36A 8035 | <485 | NA | Na
06D 19.62 <121 | Na | NaA 38D 8155 | <324 | NA | 1.08
06B 20.62 <110 | NA | Na 38C 8205 | <335 | NA | 120
06A 21.12 <114 | NA | NA 38B 8255 | <363 | NA | 1.09
10C 28.42 <115 | Na | NA 38A 83.05 | <347 | NA | 121
10B 28.92 <118 | Na | Na Thin Fine Grained Lens
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Table 4.12. Total Uranium Content in Vadose Zone Sediments Determined by Three Methods.

(3 Pages)
ID Depth GEA XRF Acid ID Depth GEA XRF Acid
(ftbgs)” | (ng/e) | (ng/e) | (ng/e) (ftbgs)” | (ng/e) | (ng/e) | (ng/g)
10A 29.42 <14.1 NA 0.56 NO SAMPLES ANALYZED
Hanford H2 Sand (upper sequence) Unit Hanford H2 Sand (middle sequence) Unit
16D 39.97 <143 NA NA 42C 89.62 <15.5 NA 0.52
16C 40.72 <13.9 NA NA 42B 90.12 <13.0 NA 0.59
16B 41.22 <12.6 NA 0.68 42A 90.62 <114 17.1° 0.58
16A 41.72 <15.9 33.2° NA 47C 98.62 <13.0 NA NA
17D 42.52 <12.4 NA NA 47B 99.12 <10.7 NA NA
17C 43.02 <12.9 NA NA 47A 98.62 <14.8 NA 0.46
17B 43.52 <18.0 NA 0.55 53D 109.92 <12.7 NA NA
17A 44.02 <16.2 NA NA 53C 110.42 <12.4 NA NA
18D 44.92 <13.6 NA NA 53B 110.92 <153 NA 0.46
18C 45.42 <22.2 NA NA 53A 111.42 <11.8 NA 0.47
18B 45.92 <223 NA 0.53 57TA 119.92 <15.6 NA NA
18A 46.42 <33.5 NA NA 62 126.75 <15.0 NA 0.50
20D 49.12 <934 NA NA 64A 131.85 <12.5 NA 0.43
20C 49.62 <45.7 NA NA 69A 140.05 <11.6 NA 0.49
20B 50.12 <88.9 NA 0.53 T4A 150.15 <15.1 <8.5 0.45
20A 50.62 <81.6 NA NA T9A 160.15 <14.8 NA 0.34
21D 51.52 <50.1 NA 0.47 82A 164.55 <12.9 NA 0.42
21C 52.02 <72.1 NA NA 83A 166.85 <13.7 <8.8 0.45
21B 52.52 <63.2 NA 0.79 Fine Grained Lens
21A 53.02 <88.4 NA 0.63 NO SAMPLES ANALYZED
21A-DUP 53.02 NA NA 0.71 Hanford H2 Sand Unit
22 54.6 NA NA 0.75 86A 171.15 ‘ <12.3 ‘ NA 0.43
22-DUP 54.6 NA NA 0.59 Hanford H3 Sand Unit

24 56.7 NA NA 0.72 90A 179.85 <14.8 NA 0.62
25 58.4 NA NA 0.54 96A 190.8 <12.8 <8.4 0.42
26D 59.22 <95.1 NA 0.58 101A 200.95 <10.5 NA 0.44
26C 59.72 <79.6 NA NA 105A 209.95 <15.2 NA 0.47
26B 60.22 <g§3.1 NA 0.56 Plio-pliestocene Mud Unit
26A 60.72 | <1012 | 12.9° | 1.66 10A | 21945 [ <133 | <78 | 112
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Table 4.12. Total Uranium Content in Vadose Zone Sediments Determined by Three Methods.

(3 Pages)
ID Depth GEA XRF Acid ID Depth GEA XRF Acid
(ftbgs)” | (ng/e) | (ng/e) | (ng/e) (ftbgs)” | (ng/e) | (ng/e) | (ng/g)
27 62.1 NA NA 1.04 110A 222.05 <14.9 27.3° NA
29 66.05 NA NA 1.03 113 225.9 NA <9 0.41
31D 68.95 <38.6 NA 1.87 Plio-pliestocene Gravel Unit
31C 69.45 <34.6 NA 2.12 115A 230.75 <13.5 NA 0.34
31B 69.95 <46.3 13.5° 1.63 120A 241.45 <10.9 <7.7 0.33
31A 70.45 <39.0 NA 0.94 123A 245.75 <09.8 NA 2.48
33 73.5 NA NA 0.99 127A 253.15 <14.9 NA NA

W to convert to meters multiply by 0.3048

#Values may be higher than background values for comparable uncontaminated Hanford formation sediments
® Values may signify tank related contamination.
NA = sample was not analyzed by the designated technique; GEA = gamma energy analyses XRF = x-ray fluorescence and
Acid = 8 M nitric acid extraction.
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Figure 4.13. Total Uranium in Sediment Based on Three Techniques
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The values in Table 4.13 that are denoted with ® show low K values that indicate some uranium
mobility or alternatively a significant fraction of the uranium is in the porewater. The calculated in situ
desorption K4 values for the samples between the depths of 60.7 and approximately 30 m (99 ft) bgs
(shown in Table 4.13 in red type) are low (range 1.4 to 107 mL/g; average 23 mL/g). In the narrow zone
between 20 and 23 m (66 and 74 ft) bgs the in-situ desorption Ky for uranium averages 3.2 ml/g but is not
as low as for the uranium at borehole 299-E33-45 near the BX-102 overfill of uranium metals waste from
the bismuth phosphate reprocessing campaigns (see Serne et al. 2002¢).

Table 4.13. Calculated In Situ Desorption K, Values for Uranium in Vadose Sediments
at 299-E33-46

ID Depth U sol'n U solid Ky
(ft bgs)"” (ng/L) (ng/g) (mL/g)
Backfill
02B-UFA 12.94 322 <11.60 >360
02A 13.7 27 <10.8 >400
06B-UFA 20.62 25.4 <11 >433
06A 21.12 24 <114 >475
10A 29.42 15 <14.1 >94(
Hanford H2 Sand (upper sequence) Unit
16A 41.72 22 <15.9 >723
17A 44.02 21 <16.2 >771
18A 46.42 35
20A 50.62 70 °
21C 52.02 63°
21A 53.02 69°
22 54.6 597°
24 56.7 632°
26-A 60.72 560° 12.9 23
27 62.1 842°
29 66.05 2056°
31C 69.45 9714° <34.6 3.56™
31B 69.95 9731° 13.5 1.39®
31A 70.45 8510° <39 458"
33 73.5 2703 *
35 77.35 1351°
36C 79.45 1847° <48.7 26
36A 79.95 2161° <485 22
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Table 4.13. Calculated In Situ Desorption K, Values for Uranium in Vadose Sediments

at 299-E33-46

ID Depth U sol'n U solid Ky
(ft bgs)"” (ng/L) (ng/g) (mL/g)
38C 82.05 3547° <33.5 9
38A 83.05 3425° <34.7 10
Background Upper H2 Sand 6to9
Thin Fine Grained Lens
39 84.55 312
39-dup 84.55 270
Hanford H2 Sand (middle sequence) Unit
41 87.85 40
42A 90.62 160° 17.1 107
46 96.8 836"
47A 98.62 580° <14.8 >26°°
53A 111.42 150° <11.8 >79
57A 119.92 141° <15.6 >111
64A 131.85 31 <12.5 >403
69A 140.05 33 <11.6 >352
74A 150.15 32 <8.5 >266
79A 160.15 26 <14.8 >569
82A 164.55 43 <12.9 >300
83A 166.85 34 <8.8 >259
Background Middle H2 Sand 7 to 24
Fine Grained Lens
84-UFA 168.45 323
84 168.45 18
Background Fine Grained Lens 7 to 10
Hanford H2 Sand Unit
86A 171.15 33 <123 >373
Hanford H3 Sand Unit
90A 179.85 27 <14.8 >548
96A 190.8 24 <12.8 >533
101A 200.95 19 <10.5 >553
105A 209.95 17 <15.2 >894
Background H3 Sand 8to13
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Table 4.13. Calculated In Situ Desorption K, Values for Uranium in Vadose Sediments
at 299-E33-46

ID Depth U sol'n U solid Kq
(ft bgs)"” (ng/L) (ng/g) (mL/g)
Plio-pliestocene Mud Unit
109A 219.45 17 <7.8 >459
110A 222.05 5 27.3 5460
113 225.9 5 <9 >1800
Background PPlz 2to10
Plio-pliestocene Gravel Unit
115A 230.75 12 <13.5 >1125
120A 241.45 20 <10.9 >545
123A 245.75 10 <9.8 >980
127A 253.15 12 <14.9 >1242
Background PPIg 15

W to convert to meters multiply by 0.3048

* Zones with elevated concentrations in comparison with the nearby uncontaminated sediment (background sediment ranges
shown in BOLD)

b K4 values are low reflecting presence of U(VI) from liquid waste when compared to K4 values for natural U that leaches
from sediments

Empty cells indicate no analyses were performed. Background ranges are from clean sediment at borehole 299-E33-338 east
of B Tank Farm fence line.

4.3.4 Technetium-99 Content in the Vadose Zone Sediments

Technetium-99 was measured unequivocally at low concentrations only in the PP1z unit between
68 and 69 m (222 and 226 ft) bgs at concentrations between 40 and 50 pCi/g in the sediment (Table 4.10).
Above in the Hanford sediments, there may be very trace concentrations of technetium between 20 to 25,
15 to 20, and 7 to 10 pCi/g at 21, 24 to 25, and 58 to 67 m (70, 79 to 83, and 190 to 220 ft) bgs,
respectively. Depending on acid matrix, the detection limit for total technetium-99 in the sediments was
between 3 to 6 pCi/g therefore most of the observed values in the Hanford formation are close to the
detection limit. The water leachable technetium-99 data are shown in Table 4.5 and Figure 4.5 after
conversion to porewater concentrations. The water versus acid extractable technetium data are shown in
Figure 4.14 in units of pCi per gram of sediment. The data are not of sufficient quality to calculate or
discuss technetium in situ desorption K4 values. We do not believe that there is any indication that
technetium is being sorbed/bound to the vadose zone sediments.
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Figure 4.14. Technetium-99 and Uranium Concentrations in Acid and Water Extracts
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4.3.5 Recharge Estimates Based on Technetium-99 Distribution in Sediments from
Borehole 299-E33-46

If our conclusion that the water and acid extract data discussed in Section 4.3.4 shows that
technetium is a non-reacting constituent, then it is possible to generate an estimate of the recharge rate in
the vicinity of borehole 299-E33-46. If we assume that the transfer line loss, which occurred in 1972, has
been pushed deeper into the vadose zone profile solely by natural recharge, we can estimate the recharge
rate from the position of the peak in technetium-99 in the borehole. There are three depths at which there
are small peaks of technetium-99 observed in the borehole sediments. Using a simple steady-state model,
equation shown below, with all of the “facts” known about the tank farm construction (depth of the
transfer line) and geology (depth to groundwater, depth of penetration of non-reacting technetium-99,
water content of sediments), and estimates for other parameters, we calculated a range of recharge values
(shown in Table 4.14).

R=6(AL/T)

where:
R = recharge rate in mm/yr
0 = volumetric water content (vol/vol)
AL~ travel distance in mm
T = travel time in years.
Known “facts” for borehole 299-E33-46 and tank B-110 include:
e Transfer Line Leak depth from bgs 7.6 m (25 feet).

Year elapsed between leak and sampling (1972 to 2001)= approximately 30 years

Travel Length of technetium-99 minor peak in Hanford H2 unit (Dlmin)= 32.61 m
(132-25 ft bgs)

Travel Length of technetium-99 peak in Hanford H3 unit (Dlmid)= 53.64 m (201 -25 ft bgs)
Travel Length of technetium peak in PP1z unit (Dlmax)= 61.26 m (226-25 ft bgs)

Average gravimetric water content (based on Table 4.1 from 20 to 201 ft bgs) is =0.043 g/g or
4.3 wt. %.

To convert to volumetric moisture content one multiplies by sediment bulk density, but we have no
direct measurements of bulk density. Thus assuming a range of bulk densities from 1.6 to 1.8 g/cm’ for
the sediments underneath tank B-110, we calculate the recharge rates found in Table 4.14.

4.65



Table 4.14. Estimated recharge rates based on Tc-99 plume depth beneath B-110

Estimated

Water Content |Bulk Density| Time Depth Depth Recharge
(vol/vol) (g/cm’) (yrs) (m) (mm) (mm/yr)
0.0688 1.6 30 32.61 32614 74.7
0.0730 1.7 30 32.61 32614 79.4
0.0773 1.8 30 32.61 32614 84.1
0.0688 1.6 30 53.64 53645 122.9
0.0730 1.7 30 53.64 53645 130.6
0.0773 1.8 30 53.64 53645 138.3
0.0688 1.6 30 61.26 61265 140.4
0.0730 1.7 30 61.26 61265 149.2
0.0773 1.8 30 61.26 61265 158.0

If the distance traveled since the leak occurred is assumed to be represented by the minor peak
(shown in Figure 4.5 in the Hanford H2 sand unit at approximately 40 m (132 ft) bgs DLmin (32.61 m)
and the average volumetric water content is in the range from 0.069 to 0.077, the range of recharge is
from 74.7 to 84.1 mm/yr. If the distance that the technetium-99 traveled from the transfer line leak is
assumed to be measured by the larger peak in Figure 4.5 in the Hanford H3 sand unit at approximately
61 m (201 ft) bgs DLmid (53.64 m), then the recharge rate is considerably higher (range from 122.9 to
138.3 mm/yr). If we assume that the technetium-99 in the PPlz mud unit is from the B-110 transfer line
leak, then the recharge estimate is between 140 and 158 mm/yr. Based on the fact that the average annual
precipitation at Hanford is approximately 162 mm/yr and lysimeter studies for un-vegetated Hanford
sediments have yielded recharge estimates between 40 and 111 mm/yr (see Gee et al. 1992), we feel that
the latter two estimates based on the technetium-99 distributions in the Hanford H3 sand unit and the PPlz
mud unit are unrealistically high. This indicates that either another source of contamination likely placed
these two deeper zones of technetium-99 in the vadose zone profile or that other sources of water besides
natural recharge have moved the technetium-99 deeper into the profile. The data for the small
technetium-99 plume at approximately 38 m (126 ft) bgs in the Hanford H2 sand unit seems more
reasonable as the extent of migration since the transfer line leak in 1972 at tank B-110.

Another very recent analysis of natural recharge rates is being created by S. M. Narbutovskih at
PNNL for inclusion in the Hanford Site Wide Groundwater Monitoring annual report for fiscal year 2002
(PNNL-14187, draft). She has observed most of the wells in the B-BX-BY WMA that are monitored for
Tc-99 exhibited simultaneous Tc-99 peaks in November 2000 that have since started to diminish.
Narbutovskih concludes that Tc-99 from the vadose zone has drained into the groundwater throughout the
WMA in response to meteoric water inputs (e.g., winter rains and snowmelt events) or some wide-spread
source of water from Hanford activities. Narbutovskih’s recharge estimate is approximately 115 mm/yr.
Note that such a calculation does not preclude individual tank leaks, such as that from B110 to arrive later
than November 2000. Based on this analysis we suggest that the minor peak, detected in sediment
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samples taken from borehole 299-E33-46, is associated with the transfer line leak from B110 and the
deeper technetium-99 peak is related to other sources.

4.3.6 Tritium Content in Vadose Zone Sediments

Table 4.15 lists the tritium content of the 1:1 sediment to water extracts reported per gram of dry
sediment. For most of the samples two to four replicates were analyzed and the table shows the average
and standard deviation of the measurements. Only one water extract appears to contain measurable
trititum above the detection limit. The sample was measured only once so it may not be as reliable as the
other data from sediment extracts that were measured several times. The one apparent tritium containing
sample was from a depth of 17 m (56.7 ft) bgs, which is a sample with definite high sodium, nitrate,
strontium-90 and other contaminants. The groundwater at 78 m (255.8 ft) bgs contains 2810 pCi/L of
tritium but it is not likely that the tritium comes from the borehole 299-E33-46 sediments.

4.4 Total Carbon, Calcium Carbonate, and Organic Carbon Content of
Vadose Zone Sediment

Table 4.16 shows the total carbon, inorganic carbon, and organic carbon contents of the vadose
zone sediment at selected depths. The inorganic carbon was also converted to the equivalent calcium
carbonate content. The sediment in the backfill, upper sand sequence and middle sand sequence of the
H2 unit are relatively low in carbonate and organic carbon with the calcium carbonate equivalent content
ranging from 1.14 to 1.33 % by weight. The two thin lenses in the Hanford H2 unit have slightly higher
calcium carbonate contents (1.5 to 2.1 % by weight). The Hanford H3 unit has only 1.1% by weight
calcium carbonate equivalent content. The fine- grained PP1z mud shows slightly higher calcium
carbonate, averaging 1.7 % by weight. The coarse grained PPlg contains the least calcium carbonate,
averaging 0.475% and low organic carbon content. There is no evidence of rich calcareous zones in the
entire profile such is found underlying the PPz unit in 200 West Area. The calcium carbonate equivalent
carbon in the contaminated sediments is very similar to the ranges of carbonate measured in the clean
borehole (average and standard deviation by lithology is shown in Table 4.16 and total data set is found in
Lindenmeier et al. 2002).
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Table 4.15. Tritium Content in Vadose Zone Sediments Based on Water Extracts

(pCi/g). (2 Pages)

Depth Tritium +0
ID (ft bgs) pCi/g pCi/g
Backfill
02A 13.7 -1.85° 2.95
06A 21.12 -5.05° 0.81
10A 29.42 -1.06" 0.53
Hanford H2 Sand (upper sequence) Unit
16A 41.72 -1.19° 4.69
17A 44.02 2.11
18A 46.42 2.04 2.55
20A 50.62 1.64 2.2
21A 53.02 2.77 3.79
24 56.7 32.64°
26C 59.72 0.58 1.8
31C 69.45 -1.02° 2.07
31A 70.45 -1.79*° 2.24
36A 79.95 -2.88°
38A 83.05 0.27
Thin Fine Grained Lens
39 84.55 -0.9° 1.05
Hanford H2 Sand (middle sequence) Unit
42A 90.62 -1.51° 0.03
47A 98.62 -2.56°
53A 111.42 -3.14° 1.19
57A 119.92 -0.5°
64A 131.85 -0.93° 0.29
69A 140.05 -1.35°
74A 150.15 1.08
79A 160.15 -2.58*
82A 164.55 -0.52°
83A 166.85 4.65
Fine Grained Lens
84 168.45 -3.5 2.59
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Table 4.15. Tritium Content in Vadose Zone Sediments Based on Water Extracts
(pCi/g). (2 Pages)

Depth Tritium +0
ID (ft bgs) pCi/g pCi/g
Hanford H2 Sand Unit
86A 171.15 -0.4
Hanford H3 Sand Unit
90A 179.85 0.24
96A 190.8 -2.91
101A 200.95 7.76 1.17
105A 209.95 -0.02 0.09
Plio-pliestocene Mud Unit
109A 219.45 -1.06 1.93
110A 222.05 -0.82 2.7
113 225.9 1.21 5.91
Plio-pliestocene Gravel Unit
115A 230.75 -1.13 0.34
120A 241.45 1.43 0.03
123A 245.75 -2.38 0.09
127A 253.15 -1.83 2.05

W to convert to meters multiply by 0.3048

*Negative values indicate that result was less than the counter background.

® Value may indicate presence of tritium.

Empty cells indicate that no analyses were performed.

o represents standard deviation of duplicate analyses.

Table 4.16. Carbon Content in Vadose Sediment from 299-E33-46

Depth Total Carbon Inorganic Carbon Organic Carbon IC as CaCO;

ID (ft bgs)™! (% wt) (% wt) (% wt) (% wt)
Backfill

02A 13.7 0.22 0.17 0.05 1.42

06A 21.12 0.18 0.13 0.05 1.08

10A 29.42 0.18 0.11 0.07 0.92
Hanford H2 Sand (upper sequence) Unit

16A 41.72 0.25 0.18 0.06 1.50

17A 44.02 0.29 0.24 0.05 2.00
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Table 4.16. Carbon Content in Vadose Sediment from 299-E33-46

Depth Total Carbon Inorganic Carbon Organic Carbon IC as CaCO;
ID (ft bgs)! (% wt) (% wt) (% wt) (% wt)
18A 46.42 0.3 0.23 0.07 1.92
20A 50.62 0.28 0.22 0.06 1.83
21A 53.02 0.236 0.184 0.050 1.53
22 54.6 0.08 0.07 0.01 0.58
24 56.7 0.02 0.16 0.04 1.33
25 58.4 0.19 0.14 0.05 1.17
26C 59.72 0.18 0.13 0.05 1.08
26-A 60.72 0.17 0.08 0.09 0.67
27 62.1 0.17 0.13 0.04 1.08
29 66.05 0.14 0.09 0.05 0.75
31B 69.95 0.19 0.15 0.04 1.25
31A 70.45 0.23 0.19 0.05 1.58
33 73.5 0.23 0.17 0.06 1.42
35 77.35 0.2 0.2 0 1.67
36A 79.95 0.18 0.14 0.04 1.17
38A 83.05 0.21 0.17 0.04 1.42
Background Upper H2 Sand 1.23+0.23
Thin Fine Grained Lens
39 | sas5 | 0.25 0.18 0.07 1.50
Hanford H2 Sand (middle sequence) Unit
41 87.85 0.16 0.1 0.06 0.83
42A 90.62 0.19 0.14 0.04 1.17
46 96.8 0.19 0.15 0.04 1.25
47A 98.62 0.15 0.12 0.03 1.00
53A 111.42 0.22 0.18 0.04 1.50
57A 119.92 0.18 0.14 0.04 1.17
64A 131.85 0.14 0.1 0.04 0.83
69A 140.05 0.38 0.31 0.07 2.58
74A 150.15 0.165 0.13 0.035 1.08
79A 160.15 0.14 0.09 0.05 0.75
82A 164.55 0.18 0.12 0.06 1.00
83A 166.85 0.18 0.14 0.04 1.17
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Table 4.16. Carbon Content in Vadose Sediment from 299-E33-46

Depth Total Carbon Inorganic Carbon Organic Carbon IC as CaCO;
ID (ft bgs)! (% wt) (% wt) (% wt) (% wt)
Background Middle H2 Sand 1.23+0.23
Fine Grained Lens
84 | 16845 | 0.19 0.13 0.06 1.08
Background Fine Grained Lens NA
Hanford H2 Sand Unit
86A | 17115 | 033 0.25 0.08 2.08
Hanford H3 Sand Unit
90A 179.85 0.19 0.16 0.03 1.33
96A 190.8 0.13 0.11 0.02 0.92
101A 200.95 0.19 0.15 0.04 1.25
105A 209.95 0.14 0.1 0.04 0.83
Background H3 Sand 0.67+0.01
Plio-pliestocene Mud Unit
109A 219.45 0.175 0.125 0.05 1.04
110A 222.05 0.34 0.27 0.09 2.25
113 225.9 0.22 0.22 0.00 1.83
Background PPlz 1.69+0.28
Plio-pliestocene Gravel Unit
115A 230.75 0.13 0.09 0.04 0.75
120B 240.95 0.09 0.08 0.01 0.67
120A 241.45 0.1 0.06 0.04 0.50
123A 245.75 0.03 0 0.03 0.00
127A 253.15 0.08 0.02 0.06 0.17
Background PPIg 0.72

W to convert to meters multiply by 0.3048
BOLD denotes values for background sediments from same lithology from clean borehole 299-E33-338.

4.5 8 M Nitric Acid Extractable Amounts of Selected Elements

The amount of material that was extractable from the vadose zone sediment into 8 M nitric acid is
shown in Tables 4.17 and 4.18. Prior to gaining access to an x-ray fluorescence unit that can determine
the total composition of contaminated sediment directly, we had no accurate method to determine directly
the total elemental composition of the contaminated sediment. As described in Serne et al. (2002a), we
tried total fusion digestion of sediment as well as 8 M nitric acid. Neither technique works well for
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Hanford vadose zone sediment. The total fusion dilutes the acid-extract solution too much to get useful
data for most trace metals and based on the x-ray fluorescence analyses, the 8 M nitric acid extraction
dissolves only a few percent to at best 50% of various major constituents.

The 8 M nitric acid extraction is a protocol used by the U.S. Environmental Protection Agency to
estimate the maximum concentrations of regulated metals in contaminated sediment that would be
biologically available. We subjected aliquots of contaminated sediment from the 299-E33-46 borehole to
the acid extraction to search for obvious signs of elevated concentrations of elements from leaked tank
fluids.

Both tables include the range for acid extractable sediments from the background or clean borehole
(299-E33-338) just east of the B tank farm fence line for the same lithologies. It would appear that the
major cation data in Table 4.17 shows that borehole 299-E33-46 contains elevated concentrations of acid
extractable sodium between 16 and 21 m (53 and 69.5 ft) bgs. Aside from sodium there does not appear
to be elevated concentrations of acid extractable major or RCRA metals although the arsenic data in Table
4.18 does appear to show elevated levels in the 299-E33-46 borehole. However, the measurement of
arsenic by ICP-MS in difficult matrices such as 8 M nitric acid is fraught with difficulty. We do not
believe that the differences in the clean and contaminated boreholes’ acid extractable arsenic is
meaningful because often the mass spectrometer shows sporadic mass interferences for arsenic isotopes
that we have not resolved.

In general, the percentages of the common cations and RCRA metals that was water extractable
versus acid extractable are quite low, similar to natural sediments that do not contain large amounts of
waste. For the slant borehole sediments under SX-108 tank, greater than 80% of the sodium that was acid
extractable was also water extractable showing the large mass of sodium that leaked from the SX-108
tank (see Serne et al. 2002c¢ for more details). No dramatic water leachable versus acid extractable
percentages were observed for the sediments from 299-E33-46 because the composition of the fluids that
leaked into the sediments was not as highly concentrated as the solutions that leaked at the SX tank farm.
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Table 4.18. Acid-Extractable RCRA Metal Content of the Vadose Sediment from

299-E33-46 Borehole. (3 Pages)

Depth Arsenic Selenium Silver Cadium Lead |[Chromium
ID ft bgs (ng/g) (ng/g) (ng/g) (ng/g) (ng/g) (ng/g)

Backfill

02A 12.94 2.22 (7.03E-02) 0.03 0.07 3.38 8.6
10A 29.42 1.24 (4.88E-02) 0.02 0.05 2.64 13.2
Hanford H2 Sand (upper sequence) Unit

16A 41.72 2.96 (3.57E-02) 0.03 0.06 3.91 11.6
17A 44.02 2.21 <2.20E-01 0.03 0.05 3.64 8.9
18A 46.42 3.82 (3.27E-02) 0.04 0.07 4.66 11.2
20A 50.62 3.00 (4.20E-02) 0.04 0.06 3.51 10.7
21C 52.02 7.9
21A 53.02 2.24 (3.93E-02) 0.03 0.05 3.71 9.5
21A Dup 53.44 2.72 (3.15E-02) 0.03 0.07 3.10 10.3
22 54.60 9.6
22 Dup 54.60 9.6
24 56.70 7.6
25 58.40 8.7
26C 59.72 9.5
26C Dup 59.72 11.8
26A 60.72 2.70 (5.11E-02) 0.04 0.06 3.91 7.6
27 62.10 9.4
29 66.05 9.9
29 Dup 66.05 11.4
31C 69.45 11.5
31B 69.95 15.5
31A 70.45 4.62° (5.91E-02) 0.04 0.08 4.82 14.7
31A Dup 70.45 3.69° (1.26E-02) 0.04 0.07 4.08 14.1
33 73.50 15.3
35 77.35 16.2
36C 79.45 13.2
36A 79.95 3.71° (2.49E-02) 0.04 0.07 3.69 15.4
38C 82.05 14.1
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Table 4.18. Acid-Extractable RCRA Metal Content of the Vadose Sediment from

299-E33-46 Borehole. (3 Pages)

Depth Arsenic Selenium Silver Cadium Lead |[Chromium
ID ft bgs (ng/g) (ng/g) (ng/g) (ng/g) (ng/g) (ng/g)

38C Dup 82.05 16.7
38A 83.05 3.93° (9.61E-03) 0.04 0.08 4.20 15.9
Background low 0.80 0.05 0.025 0.06 2.30 6.40

high 1.00 0.06 0.028 0.07 2.90 7.70
Thin Fine Grained Lens
39 84.55 18.2
Hanford H2 Sand (middle sequence) Unit
41 87.85 11.3
42A 90.62 2.67 (1.47E-02) 0.03 0.06 3.23 11.1
46 96.80 14.0
47A 98.62 3.03 (1.30E-02) 0.04 0.06 3.43 11.1
52 109.00 11.2
53A 111.42 2.57 <2.00E-01 0.03 0.05 3.58 11.4
57A 119.92 2.35 (5.38E-03) 0.03 0.05 2.59 10.9
64A 131.85 2.47 (6.26E-03) 0.03 0.06 2.61 13.6
69A 140.05 2.07 <2.24E-01 0.03 0.06 2.92 10.2
74A 150.15 2.73 (1.35E-03) 0.03 0.07 3.02 14.1
79A 160.15 2.35 (9.19E-03) 0.04 0.06 2.67 12.1
82A 164.55 2.55 <2.30E-01 0.08 0.06 2.94 12.4
83A 166.85 2.43 <2.25E-01 0.04 0.06 2.81 13.2
Background low 0.90 0.04 0.03 0.06 2.50 12.00

high 1.26 0.08 0.04 0.10 4.00 14.50
Fine Grained Lens
84 168.45 18.0
Hanford H2 Sand Unit
86A 171.15 2.81 (4.73E-02) 0.04 0.06 3.61 11.0
Background low 1.20 0.05 0.04 0.09 3.60 17.0

high 2.70 0.06 0.08 0.23 7.00 36.0
Hanford H3 Sand Unit
90A 179.85 2.40 (2.54E-02) 0.03 0.07 291 8.5
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Table 4.18. Acid-Extractable RCRA Metal Content of the Vadose Sediment from

299-E33-46 Borehole. (3 Pages)

Depth Arsenic Selenium Silver Cadium Lead (Chromium
ID ft bgs (ng/g) (ng/g) (ng/g) (ng/g) (ng/g) (ng/g)

96A 190.80 2.21 <2.13E-01 0.03 0.06 2.99 10.9
101A 200.95 2.12 (4.02E-02) 0.03 0.05 2.91 10.7
105A 209.95 2.25 (2.19E-02) 0.03 0.07 12.32 10.7

low 0.70 0.05 0.02 0.07 2.10 9.0
Background

high 0.80 0.08 0.03 0.08 2.50 11.0
Plio-pliestocene Mud Unit
109A 219.45 2.93 (1.34E-02) 0.03 0.07 3.08 18.2
110A 222.05 6.08 <2.09E-01 0.10 0.24 13.38 28.4
110A Dup 222.05 5.40 <2.06E-01 0.09 0.22 12.59 26.5
113 225.90 20.9

low 1.30 0.05 0.03 0.08 2.80 9.0
Background

high 5.90 0.10 0.12 0.27 21.00 11.0
Plio-pliestocene Gravel Unit
115A 230.75 1.97 (1.86E-02) 0.03 0.05 4.88 8.6
120B 240.95 11.5
120A 241.45 1.10 (1.52E-02) 0.03 0.05 21.40 5.6
123A 245.75 0.66 (2.53E-02) 0.02 0.03 2.34 2.4
127A 253.15 1.09 (1.36E-02) 0.03 0.05 20.42 6.3

low 0.496 0.066 0.032 0.058 2.325 7.29
Background

high

W to convert to meters multiply by 0.3048

#Zones with elevated concentrations in comparison with the nearby uncontaminated sediment (uncontaminated ranges

shown for same lithologies in samples from borehole 299-E33-338.

() Values in parentheses are below quantification limit but above the detection limit and thus considered useful.

Blank spaces denote no analyses performed for these samples
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4.6 Sediment Total Oxide Composition

Eleven samples of the bulk vadose zone sediment from the 299-E33-46 borehole were crushed and
analyzed with x-ray fluorescence to obtain the complete composition of the sediment. Additional aliquots
of the same eleven samples were subjected to particle size analysis and the clay separates were retained.
The total oxide composition of the bulk sediments was used to aid in the quantification of mineralogy that
will be discussed later.

The total elemental oxide composition for the bulk sediment is shown in Table 4.19. Using two
types of x-ray fluorescence instruments, we were able to analyze for all natural elements from sodium
through uranium. We lack the capability for measuring the concentrations of only carbon, beryllium,
boron, fluorine, lithium, and nitrogen. However, the carbon content of the bulk sediment was analyzed,
as discussed in Section 4.4, so data for that component is available. The beryllium, boron, fluorine, and
lithium content of the sediment likely is small; therefore, the oxide mass of the sediment should be able to
be calculated and come close to 100% mass balance. We have assumed that the iron present in the
sediment is all iron (III) oxide though there may be some reduced (ferrous oxides) iron also present.

The mass balances for the bulk sediment vary from 90.3 to 99.3 % by weight. The low mass
balances for samples in the PPlz mud unit appear to be caused by low silica values and perhaps low
alumina values. The same low mass balances were found in the analyses of the sediments from the PPlz
unit at the contaminated borehole (299-E33-45) east of tank BX-102. We suspect that there is a matrix
correction that has not been optimized for the mineralogy in this lithology that is causing us to under
predict the silica content. As found for uncontaminated sediment from outside other tank farms, the
Hanford formation sediment is dominated by silica and alumina. Calcium, carbonate, iron, magnesium,
potassium, sodium, and titanium make up most of the rest of the oxides. We do not have a large database
of total elemental compositions but when compared to the two clean RCRA boreholes near SX Tank
Farm (see Serne et al. 2002a), and the clean borehole east of the B Tank Farm (see Lindenmeier et al.
2002), the contaminated sediment at 299-E33-46 does not show significantly higher contents of any
element. The total elemental composition of uncontaminated sediments from the clean borehole east of
the B Tank Farm, 299-E33-338 and presented in Lindenmeier et al. (2002), was determined using total
fusion and ICP and ICP-MS by an outside analytical vendor as compared to the XRF analyses performed
on the contaminated sediments such that direct comparison is not easy. For the major constituents, the
XRF data for silica in the PPlz unit presented in Table 4.19 does appear to be low by approximately 5 wt
% based on data from the clean borehole.

For some trace constituents such as tin, antimony, and cesium the XRF results shown in Table 4.20
are higher by a factor of ten than values for comparable samples from the clean borehole (see
Lindenmeier et al. 2002). We do not believe that the higher values for some trace metals in the
contaminated sediments from borehole 299-E33-46 reflect contamination. It is much more probable that
the observed differences reflect the two totally independent analytical methods used to obtain the data.
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4.7 Particle Size Measurements on Vadose Zone Sediment

The hydrometer method was used to determine the particle size distributions of several samples from
299-E33-46 as shown in Table 4.21. No wet sieving was done to separate the gravel and sand fractions
from each other so the particle size data shows only combined gravel + sand, silt, and clay fractions. The
thin fine-grained lenses and Plio-Pleistocene silts are highlighted in yellow shading in the table. One
sample at the very top of the Plio-Pleistocene silt (sample 109A) does not contain very much silt and clay
even though it is assigned to the silt layer. The same situation was found at borehole 299-E33-45 such
that we conclude that the uppermost portion of the PPlz unit is in fact coarser grained than the middle and
deepest portions.

Besides the hydrometer estimate of clay-size particles, we physically separated the clay material
from the silt by performing numerous re-suspensions of the slurry and decanting off the clays after the
silts had settled. The mineralogical characterization of this clay fraction is described below in section 4.9.

4.8 Particle Density of Bulk Sediment

The particle density for each of the 299-E33-46 borehole samples that were used in the hydrometer
procedure is shown in Table 4.22. The values are similar to those for uncontaminated sediment from the
same lithologic facies found in 200W (see Serne et al. 2002a) and in general are about 0.05 to 0.10 g/cm’
higher than values measured for the uncontaminated sediments from borehole 299-E33-338 located east
of the B Tank Farm. The differences in particle density between the sediment samples from this
contaminated and the uncontaminated borehole are likely caused by analyst’s artifacts. Differences on
the order of 0.1 g/cm’ have been found on identical samples that were analyzed by three different lab staff
during the characterization of the SX Tank Farm vadose zone sediments. There does not appear to be
any statistically significant differences in the particle densities for the 299-E33-46 or for that matter
299-E33-338 clean or background sediments versus lithologic unit. The average value for all the Hanford
formation sediments for boreholes 299-E33-46 and 299-E33-338 is 2.76 + 0.14 g/cm’ similar to the value
2.78 g/em’ often used for generic Hanford formation sediments. The average particle density for the
Plio-pleistocene sediments from the two boreholes is 2.78 +0.07 g/cm’.

4.9 Mineralogy

XRD analysis of the 11-bulk sediment samples from borehole 299-E33-46 shows the samples to all
have a similar mineralogical signature. XRD analysis the sediment shows the samples collected from the
Hanford formation (16A, 26A, 31B, 42A, 74A, and 84A) appear to be mineralogically similar. The
sediments are mostly quartz and feldspar (both plagioclase and alkali-feldspar), with trace amounts of
mica, chlorite, and an amphibole. Samples examined from the lower Hanford unit (H3) along with
samples from the PPz and PPlg unit all contain quartz and feldspars, along with significant amounts of
clay material, predominantly mica and chlorite. For example, the XRD tracing of a typical sediment
sample (110A) from the PPlz unit is provided in Figure 4.17, along with a quartz reference pattern. The
main reflection for quartz is 26.63° 20, followed by less intense reflections at 20.86, 36.53, 39.46, 42.43,
50.12, 59.92° 26. The main reflections associated with feldspar minerals are found between 27.34° 20
and 27.92° 20, with the higher 26 values belonging to the plagioclase series. Chlorite and mica minerals
were identified on the x-ray tracings by the reflections at 6.3° 26 and 8.8° 20, respectively. The presence
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of an amphibole was established by the characteristic 100% reflection at 10.5° 26. Additionally, trace
amounts of the zeolite, laumontite, were identified in most of the samples by a diffraction peak positioned
at 9.36° 20.

One interesting observation was noted on samples 96A and 109A. The XRD tracings from these two
samples indicate an unusually high concentration of the amphibole mineral (hornblende) compared to all
the other samples. Hornblende is typically found in most Hanford sediments, but only as trace amounts.

Table 4.21. Particle Size Distribution Percent Weight

Depth % Gravel plus
ID (ft bgs)™! %Sand %Silt %Clay

Backfill
No Sample Analyzed

Hanford H2 Sand (upper sequence) Unit

16A 41.72 95.90 2.60 1.50
26A 60.72 96.16 1.92 1.92
31B 69.95 96.10 2.96 0.94

Thin Fine Grained Lens

No Sample Analyzed
Hanford H2 Sand (middle sequence) Unit

42A 90.62 91.31 2.79 591
74A 150.15 91.43 5.83 2.74
Fine Grained Lens
84 168.45 68.06" 28.85° 3.08°
Hanford H3 Sand Unit
96A 190.8 96.54 2.21 1.25

Plio-pliestocene Mud Unit

109A 219.45 89.48 8.97 1.55
110A 222.05 7.00° 85.73° 7.27°
113 225.9 53.74° 39.82° 6.44°

Plio-pliestocene Gravel Unit
120B 240.95 87.44 9.81 2.76

W to convert to meters multiply by 0.3048
? Fine grained samples
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Table 4.22. Particle Density of Bulk Sediment from 299-E33-46

Depth Ave. Particle Density c
ID (ft bgs)™ (g/cm’) (g/cm’)
Backfill
No Sample Analyzed
Hanford H2 Sand (upper sequence) Unit
16A 41.72 2.81 0.097
26A 60.72 2.65 0.028
31B 69.95 2.90 0.238
Thin Fine Grained Lens
No Sample Analyzed
Hanford H2 Sand (middle sequence) Unit
42A 90.62 2.89 0.017
74A 150.15 291 0.047
Fine Grained Lens
84 168.45 2.79 0.019
Hanford H3 Sand Unit
96A 190.8 291 0.018
Plio-pliestocene Mud Unit
109A 219.45 291 0.020
110A 222.05 2.82 0.024
113 225.9 2.71 0.061
Plio-pliestocene Gravel Unit
120B 240.95 2.78 0.024

W to convert to meters multiply by 0.3048
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Figure 4.17. XRD Tracing of sample 110A along with the standard reference pattern for quartz.

Results from the semi quantification of the minerals in the bulk samples are provided in Table 4.23.
Quartz concentrations ranged from 22.4 wt % (96A) to 43.5 wt % (31B), with an average concentration of
3346 wt %. The borehole sediment contained plagioclase feldspar concentrations from 10 to 34 wt %
and potassium feldspar content measured between 8 to 37 wt-%. Plagioclase feldspar was more abundant
than potassium feldspar in all but three samples (16A, 26A, and 84A). Over all, the feldspar content
(both plagioclase and alkali feldspars) averaged about 4316 wt-%. The amphibole phase comprised
<9 wt % at most, with the majority of samples having concentrations in the 2 to 4 wt % range.

Clay minerals identified in the whole rock sediment included mica and chlorite. Mica concentrations
ranged from a low of 6.5 wt % (120B) to a high of 32 wt % (113A), with most of the intervals having
concentrations between 7 and 15 wt %. Chlorite concentrations were <7 wt% in all sediments analyzed
with the exception of two samples in the Plio-Pleistocene Mud Unit. Samples 109A and 110A contained
11.7 and 21.2 wt % chlorite, respectively. Smectite and kaolinite minerals were not identified in the
whole rock sediment samples due in part to the sample preparation technique and the low overall
concentration.

X-ray diffraction analysis was performed on the <2 micron fraction of each sample and the results
are presented below. The clay fraction is dominated by four clay minerals: smectite, chlorite, illite, and
kaolinite with minor amounts of quartz and feldspar. Figure 4.18 provides XRD-tracings of a typical clay
fraction (from sample 110A) following four different treatments. Smectites are considered the fraction of
the magnesium-saturated sub-sample that gives a basal reflection at 5.85° 26 and expands to 5.28° 26
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upon solvation with ethylene glycol. Saturation with a potassium cation shifts the reflection down to 7.3°
20 followed by the irreversible collapse to 8.88° 20 after heating for one hour at 575°C.

[llite is the simplest of the four clay mineral phases to identify in this sediment. The basal reflections
are located at 8.88, 17.8, and 26.7° 20. The various treatments including cation saturation, solvation with
ethylene glycol, and heating do not affect the structure of the illite. This is shown in Figure 4.18 by
examination of the illite basal reflection at 8.88° 20. The increase in intensity of the 8.88° 20 reflection
between the heated and the unheated potassium-saturated sample is due to the incorporation of the
smectite reflection resulting from the smectite structure collapsing.

Table 4.23. Semi-quantitative XRD Results of Minerals from the S01052 Borehole.

Sample Mineral Phase (wt-%) Goodness

1D Quartz Amphibole Plagioclase ‘ K-Spar ‘ Mica ‘ Chlorite of fit!
Hanford H2 Sand (upper sequence) Unit

16A 34.8 1.0 12.7 36.6 10.4 4.5 0.57

26A 333 0.5 9.6 37.2 14.2 5.2 0.78

31B 43.5 2.8 27.4 13.2 9.1 4.0 0.46
Hanford H2 Sand (middle sequence) Unit

42A 38.5 3.1 28.5 16.5 9.4 4.0 0.41

T4A 39.6 2.0 23.0 20.2 11.8 3.5 0.71
Fine Grained Lens

4A | 345 | 2.9 IEE 200 | 85 | 56 0.81
Hanford H3 Sand Unit

96A | 224 | 4.0 IEX 23 | 270 | 52 0.22
Plio-Pleistocene Mud Unit

109A 31.1 7.6 27.9 14.3 7.5 11.7 0.22

110A 26.5 4.7 14.1 18.8 14.6 21.2 0.30

113A 25.3 3.5 24.8 7.8 31.7 6.9 0.17
Plio-Pleistocene Gravel Unit

1208 | 326 | 8.7 34.1 134 | 65 | 46 0.20

! Values closest to 1.0 represent an ideal refinement.
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The scans were collected from 2 to 45° 20 with a 0.04° step and 2-second dwell time. The black line
represents the Mg-saturated fraction and the red line represents the same fraction solvated with
ethylene glycol. The blue line indicates the saturation with K* cation and the green line is the K-
saturated sample heated to 575° C for one hour.

Figure 4.18. XRD tracings of preferentially oriented clay slides taken from
Borehole 299-E33-46 sample 110A

Chlorites are identified by their basal series of diffraction peaks at 6.24, 12.5, 18.8, and 25.2° 26,
which are unaffected by cation saturation or ethylene glycol solvation. Heating to 575°C shifts the first
order reflection to 6.37° 26 and also tends to diminish or eliminate the higher order reflections (12.5,
18.8, and 25.2° 20) as shown in Figure 4.18. Kaolinite is difficult to identify in the presence of a chlorite
mineral. Basal reflections characteristic to kaolinite are positioned at 12.5 and 24.9° 26, which are
superimposed on the even-order chlorite peaks. These kaolinite reflections are unaffected by cation
saturation and ethylene glycol solvation. When heated the kaolinite structure becomes amorphous and the
reflections are eliminated. Positive identification of kaolinite in the presence of chlorite can be
determined by examination of the 24.9 to 25.2° 20 region of the XRD tracing. The kaolinite basal
reflection at 24.9° 20 can be distinguished from the chlorite 25.2° 20 reflection (Figure 4.18).
Furthermore, published reports characterizing similar clay fractions of Hanford sediment identify
kaolinite by electron microscopy.
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Trace amounts of quartz are evident by the diffraction peak located at 20.85° 26. The 100%
reflection for quartz (26.6° 20) is hidden by the third basal reflection of illite located at 26.6° 26.
Plagioclase feldspar is also identified in the clay fraction by the minor diffraction peak at 27.8° 26.

Semi-quantification results of the clay minerals in the < 2 micron fraction are presented in
Table 4.24. Total recoveries were normalized to 100% and the normalization factor used for each sample
is provided in the last column. Smectites ranged in concentrations from a low of 22 wt % (74A) to a high
of 50 wt % (110A). Illite amounts varied from 30 to 56 wt % with the majority of samples having
concentrations in the 40 to 50 wt % range. Chlorite and kaolinite were the least abundant of the clay
minerals identified in the samples with concentrations equal to or less than 20 wt % and 9 wt %,
respectively. Quartz and feldspar minerals were present as trace amounts in the clay fraction and
therefore were not included in totals presented in Table 4.24.

Total clay recoveries were within £25% of the “ideal” 100% for eight of the 11 samples analyzed.
Factors affecting the semi-quantification procedure (preparation and condition of the clay filter cake)
were generally controlled and not thought to be a significant factor. Quantitative analysis is considered
good if errors amount to +10 % of the amounts present for major constituents and £20 % for minerals
whose concentrations are less than 20% (Moore and Reynolds, 1997). Other x-ray diffractograms of the
bulk sediment and clay fractions are presented in Appendix D.

Table 4.24. Semi-quantitative XRD Results of Clay Minerals Separated from the Sediment
Collected from Borehole 299-E33-46

Sample Mineral Phase (wt-%) Normalization
ID Smectite Ilite Chlorite Kaolinite Factor
16A 30 48 12 9 0.87
26A 27 52 13 8 0.86
31B 23 56 12 9 0.67
42A 35 44 13 8 0.66
T4A 22 53 18 8 1.01
84A 46 30 20 5 1.25
96A 32 44 16 9 1.10
109A 28 49 17 6 0.88
110A 50 38 6 6 0.75
113A 32 46 13 9 0.84
120B 39 40 15 6 2.26
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4.10 Matric Suction Potential Measurements

Water-potential measurements have been included in the Hanford Tank Farm Vadose Zone
Characterization Program to document the energy state of pore waters in the tank farm sediments. At the
tank farms, vegetation is absent, surface soils are coarse-textured, and the potential for drainage
(recharge) is high (Gee 1987; Gee et al. 1992). However, actual drainage rates are generally unknown.
Attempts are currently being made to determine the soil water matrix potential and use the analysis to
confirm the occurrence of recharge within the Hanford Site Tank Farms.

The status of soil water can be defined by either the amount of water in the soil (water content) or by
the force that holds water in the soil matrix (i.e., the matric potential or suction) (Or and Wraith, 2002).
In recent studies, Serne et al. (2002¢) measured both gravimetric water content and matric water potential
(filter paper method) on core samples obtained from borehole 299-E33-45 in the BX environs. The same
filter paper technique was used at 299-E33-46 and 299-E33-338, within the B-BX-BY WMA. All core
samples from 299-E33-46 from the surface to the water table were analyzed. A sandwich of three
Whatman #42 filter papers was placed in the sediment, sealed, and equilibrated for at least 21 days. The
water content of the middle filter paper (not allowed to collect sediment particles) was subsequently
measured and the water potential obtained from a predetermined water-retention characteristic curve. The
filter-paper method provides a good estimate of water potentials over the range from -0.01 to -2 MPa (1 to
200 m (3.3 to 656 ft) suction head) (Deka et al. 1995).

Table 4.25 and Figure 4.19 show the matric potentials as a function of depth for the 299-E33-46
samples. Also plotted in Figure 4.19 is the gravity head expressed in pressure units (MPa). The gravity
head is zero at the water table and increases linearly with height to the soil surface. For 299-E33-46, the
water potential, as measured from the core samples, is much less than the gravity potential from the
surface down to 70 m (230 ft) excepting one data point at about 44 m (145 ft) bgs, which appears to be a
bad data point. The general trend is that the water potentials are consistent with a draining profile (water
potentials wetter than -0.01 MPa). Below 71 m (233 ft) to the water table at approximately 78 m
(approximately 255.8 ft), there appears to be a drier condition than above these depths. Note that the
lower depths contain coarse materials, so sample handling (e.g. drying) may be responsible for the
apparent drier matric potentials. In any case, it appears that borehole 299-E33-46 has a matric potential
profile that strongly suggests drainage is occurring. The green line in Figure 4.19 is the theoretical line
that represents the steady state unit gradient condition, which represents a matric potential in a sediment
profile that is neither draining or drier than (actively evapotranspiring) than equilibrium conditions.
Matric potential values to the left of the unit gradient line suggest a draining profile.

For borehole 299-E33-338 (C3391), located outside the southeast corner of the B tank farm in
relatively undisturbed terrain, the matric potential data are considerably drier than at 299-E33-46
borehole, particularly near the surface. These matric potential data (see Figure 4.20) are consistent with
the hypothesis that non-vegetated areas, with coarse-textured surfaces, drain more than areas with similar

soil, but with vegetation present. It appears that the wetting from meteoric sources has not reached to the
water table at the 299-E33-338 site.
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Table 4.25. Matric Potential Measurements on Core and Grab Samples from Borehole 299-E33-46

Theoretical Theoretical Theoretical
Depth [Measured Matric Depth Measured Matric Depth |Measured Matric
(ft bgs)| Core Potential (ft bgs)| Core Potential (ft bgs)| Core Potential
O (Mpa) (Mpa) ®" | (Mpa) (Mpa) O (Mpa) (Mpa)
Backfill Thin Fine-grained Lens H2-lower sand
12.94 | 0.0031 0.7402 No sample 170.9 | 0.0191 0.2588
14.07 | 0.0292 0.7368 H2-middle sand 171.4 | 0.0090 0.2573
20.87 | 0.0606 0.7161 90.37 | 0.0181 0.5042 H3 sand
21.37 | 0.0124 0.7145 90.87 | 0.0420 0.5027 179.6 | 0.0101 0.2323
29.17 | 0.0041 0.6908 99.37 | 0.1044 0.4768 180.1 | 0.0067 0.2307
29.67 | 0.1435 0.6892 98.87 | 0.0954 0.4783 190.6 | 0.0175 0.1987
H2-upper sand 111.17| 0.0140 0.4408 191 0.0166 0.1975
41.47 | 0.0036 0.6533 111.67 | 0.0199 0.4393 200.7 | 0.0109 0.1679
41.97 | 0.0033 0.6518 119.67 | 0.0091 0.4149 201.2 | 0.0197 0.1664
43.77 | 0.0043 0.6463 120.17 | 0.0105 0.4134 209.7 | 0.0089 0.1405
44.27 | 0.0031 0.6447 131.6 | 0.0128 0.3786 210.2 | 0.0069 0.1390
46.17 | 0.0037 0.6390 132.1 | 0.0057 0.3770 PPIz mud
46.67 | 0.0038 0.6374 139.8 | 0.0133 0.3536 219.2 | 0.0356 0.1116
50.37 | 0.0021 0.6262 140.3 | 1.0656 0.3520 219.7 | 0.0251 0.1100
50.87 | 0.0026 0.6246 149.9 | 0.0097 0.3228 221.9 | 0.0303 0.1033
52.77 | 0.0030 0.6188 150.4 | 0.0135 0.3213 PPIg gravelly sand
53.27 | 0.0029 0.6173 159.9 | 0.0048 0.2923 230.5 | 0.0014 0.0771
60.47 | 0.0026 0.5954 160.4 | 0.0093 0.2908 241.2 | 0.1963 0.0445
60.97 | 0.0030 0.5938 164.3 | 0.0094 0.2789 253.9 | 0.0916 0.0058
70.2 | 0.0057 0.5657 164.8 | 0.0077 0.2774 253.4 | 0.0295 0.0073
70.7 | 0.0036 0.5642 166.6 | 0.0103 0.2719
79.2 | 0.0068 0.5383 167.1 | 0.0117 0.2704
79.7 0.0087 0.5368 Thin Fine-grained Lens
82.8 0.0059 0.5273 No sample
83.3 | 0.0097 0.5258

W to convert to meters multiply by 0.3048
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Figure 4.19. Matric Water Potential Measured by Filter Paper Technique on Core Samples from
Borehole 299-E33-46
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Figure 4.20. Matric Water Potential Measured by Filter Paper Technique on Core Samples from
Borehole 299-E33-338 Located Outside the SE Perimeter of the B Tank Farm.
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4.11 Vadose Zone Monitoring System

A series of instruments was placed in the vadose zone sediments at borehole 299-E33-46 as the
casing was being pulled out of the ground in July and August 2001. The Vadose Zone Monitoring
System (VZMS) consists of eight sets of sensors placed at depths ranging from 0.9 m (3 ft) to 68.9 m
(226 ft) bgs. The sensors are used for continuous monitoring of vadose-zone hydraulic properties at and
beneath the surface of the tank farm. The VZMS sensor arrays consisted of advanced tensiometers, water
contents sensors, heat-dissipation units, solution samplers (also called suction candles), temperature
sensors, and a water-flux meter. Figure 4.21 shows the configuration of the sensor nest before insertion
into the borehole. Gee et al. (2001, 2003) provide details on the installation and a description of each
instrument. Table 4.26 shows the depths below ground surface at which the instruments are deployed.
The instruments are surrounded by silica flour (SCS-90, U. S. Silica, Ottawa, IL) that was wetted with
potable water (Columbia River source) during the installation as the casing was being removed. The
silica flour was poured as a slurry such that it made good contact between the formation and the sensors.
The slurry was allowed to settle and then a 0.3 m layer of sand (30 mesh) was added above the slurry.
The rest of the borehole up to the next instrument nest was filled with bentonite granules as the casing
was withdrawn.

Figure 4.21. Vadose-Zone Monitoring System (without water-flux meter and temperature sensor)
Before Deployment in B Tank Farm. Sensors from left to right are the Modified CSI Water
Content Sensor, Advanced Tensiometer, Suction Candle, and Heat-Dissipation Unit.
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Table 4.26. VZMS Sensor Placement in Borehole 299-E33-46 near Tank

B110 in B Tank Farm
Depth (bgs) | WFM® AT HDU® | wcC® Temp sc@

3 X X X

6 X X X X X

9 X X X

15 X X X X X
53 X X X X
82 X X X X X
218 X X X X
226 X X X X X

@ WFM =Water Flux Meter;

® HDU =Heat Dissipation Unit;

© WC =Water Content Sensor

@ SC =Suction Candle (solution sampler)

The instruments were deployed at each depth from the deepest to the shallowest depth through the
casing as it was withdrawn. The casing was raised to just above the depth of interest and the instrument
cluster, silica flour, sand introduced down the casing into the open hole at the desired depth. The casing
was cut off at the surface as lengths were withdrawn. The uppermost 3 depths were not instrumented with
solution samplers (suction candles).

Data have been collected from each instrument since February 2002 and vadose zone porewater has
been extracted from all the suction candles on the following dates: 02/12/2002, 05/17/2002, 07/02/2002,
07/30/2002, and 9/24/2002. The chemical composition of the waters removed from the suction candles
are reported in Tables 4.27 to 4.29. The chemical composition of the porewaters obtained through the
suction candle devices shows that the first sampling after installation has rather dilute concentrations
more reflective of the potable water (from the Columbia River) that was used to wet the solids that were
packed around the instrument sensors. Subsequent samples of porewater extracted approximately three to
seven months after sensor installation show that the waters are gaining dissolved salts. The chemical
composition of the porewaters obtained through the suction candles for some constituents appears to be
reaching a steady state value most similar to the porewaters obtained out of the core materials using the
ultra centrifuge (UFA) but for other constituents the concentrations versus time are either still rising
(especially at and below 82 ft bgs) or in a few instances fluctuating or even dropping. Further, the trends
versus time for the chemical evolution of any given constituent shows variation with depth; that is the
chemical evolution is not the same for each constituent at all depths. Most of the variation in composition
versus time is not analytical vagaries but must reflect actual variation because the duplicate measurements
on field duplicate samples are showing excellent reproducibility. It will be interesting to follow the
evolution of the chemical composition of the porewater with time and to attempt to correlate the
variations with other data being collected from the other sensors deployed at the same depths.
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An average value for the last two to three suction candle samplings for the major cations, anions, and
trace metals of interest (technetium-99 and uranium) are plotted along with the porewaters obtained from
the cores using ultracentrifugation and the dilution corrected porewaters obtained from the 1:1 sediment
to water extracts in Figures 4.1 through 4.5. In general, the suction candle generated porewaters show the
same trends as discussed in Section 4.2 where the dilution corrected 1:1 sediment to water extracts and
UF A porewater results are described. Namely the pH of the suction candle samples at 16 and 25 m (53
and 82 ft) bgs are higher than in the rest of the borehole profile suggesting the presence of caustic fluid
from the tank. The electrical conductivity of the suction candle samples is highest for the 16 m (53 ft) bgs
depth and at 25 m (82 ft) bgs is higher than the rest of other shallower and deeper profile values
suggesting that the contamination plume is still located predominately between these two depths. There is
high fluoride at 25 m (82 ft) bgs that is not increasing with time. The nitrate concentrations in the suction
candle samples is increasing versus time below 25 m (82 ft)bgs and is highest at 66 m (218 ft) bgs. The
sulfate concentration is also increasing versus time and is high between the depths of 16 and 66 m (53 and
218 ft) bgs. As shown in Figure 4.2, the suction candle sulfate values are much higher than the UFA
squeezed porewaters and the dilution corrected water extract values. There may be sulfate in the
materials used to pack around the sensors or in some of the sensors themselves (gypsum?).

The suction candle cation data show high sodium between the depths of 16 and 25 m (52 and
82 ft) bgs as would be expected based on other measurements shown in Figure 4.3. The sodium
concentrations at most depths where suction candles are present appear to be increasing with time. The
divalent cations (calcium, magnesium, and strontium) are all low in the suction candle-obtained porewater
at 25 m (82 ft) bgs. The low concentrations reflect the effects of the high sodium in the leaked tank fluids
causing ion exchange reactions that push the divalent cations deeper in the vadose zone sediment profile.

The technetium-99 and uranium concentrations in the suction candle porewater are similar to the
values from the other two porewaters collected with the UFA or calculated from the water extracts.
Namely, elevated uranium concentrations are found at 25 m (82 ft) bgs and to a lesser extent at 16 m
(53 ft) bgs. The technetium-99 suction candle values are high at both 66 and 69 m (218 and 226 ft) bgs
and much lower at shallower depths suggesting that either the entire technetium plume has been pushed
into the Plio-Pliestocene mud unit from above or that the technetium has migrated into the sediments
horizontally for other sources than the tank B-110 transfer line leak.

4.12 Groundwater Analyses

The chemical composition of the groundwater is reported in Table 4.30. The data are also plotted
along with the calculated porewater (obtained from the dilution corrected 1:1 water extracts),
ultracentrifuged porewaters taken from the core samples and in the in-situ suction candle samples
obtained over time. All the data are plotted in Figures 4.1 through 4.5. In general, the vadose zone
porewater obtained from the cores by ultracentrifugation and the suction candles still emplaced in the
decommissioned borehole, obtained by drawing a vacuum periodically to extract fluid, contain more
dissolved common cations and anions than the groundwater sample. The groundwater sample is
influenced by inputs from uncontaminated recharge water, as well as fluids disposed to cribs, trenches
and ponds that had lower concentrations of contaminants than tank fluids thus we would expect the
groundwater to be more dilute.
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The technetium-99 and nitrate concentrations in the groundwater are 1815 pCi/L and 16.4 mg/L,
respectively. This yields a ratio of 111 pCi/mg. For the overlying Hanford H3 sand unit (UF A squeezed)
and in the Plio-Pleistocene mud unit (both UFA squeezed and suction candle), the ratio ranges from 760
and 400 to 900 pCi/mg, respectively. This suggests that the technetium-99 in the groundwater at
299-E33-46 has been diluted with waters with another source of nitrate provided that the technetium-99
has entered the groundwater from vertically descending through the vadose zone sediments.

The tritium concentration in the groundwater does not appear to come from the vadose sediments at
borehole 299-E33-46 that overly the water table because no tritium was found, excepting at depths from
about 14 to 18 m (46 to 60 ft) bgs, in the vadose zone profile. At the value found in the groundwater
(2810 pCi/L) we should have been able to measure tritium in the overlying sediments. It is thus not clear
that the source of the contamination in the groundwater obtained from the water table at 299-E33-46
before the borehole was decommissioned is from the vadose zone near tank B-110.

For a few of the constituents the vadose zone water and groundwater have similar concentrations,
such as alkalinity, fluoride, phosphate, aluminum, barium and silicon. These constituents are likely
controlled by dissolution reactions with the sediments.

Table 4.30. Composition of Groundwater Taken from Borehole 299-E33-46 at 255.8 ft bgs.

Constituent Units Value Constituent Units Value
pH Measurement 7.87+£0.05 | Chromium ug/L 7
Specific Conductance uS/cm 360 Cobalt ug/L <8.2
Dissolved organic carbon ug/L 390+120 Copper ug/L <1.2
Alkalinity as CaC0j; mg/L 100 Iron ug/L 38.1
Chloride mg/L 7.8 Magnesium mg/L 9.95
Cyanide ug/L <2.5 Manganese ug/L 29.2
Fluoride mg/L 0.31 Nickel ug/L 34
Nitrate mg/L 16.4 Potassium mg/L 4.62
Nitrite mg/L <0.007 Sodium mg/L 16.1
Sulfate mg/L 33.7 Strontium mg/L 0.185
Phosphate mg/L "o Silicon mg/L "t
Aluminum ug/L <7 Zinc ug/L 9.5
Barium ug/L 35.9 Technetium-99 pCi/L 1815+118
Cadmium ug/L <0.15 Tritium pCi/L 2810
Calcium mg/L 34.8 Uranium ug/L 2.76+0.09

TR

constituent was not measured
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5.0 Summary and Conclusions

In this section, we present summary information on what the 299-E33-46 sediment
characterization data means. Conclusions are included to aid in making decisions on what
interim actions and future studies are needed to make current and future tank farm operations
less likely to unfavorably effect the environment.

5.1 Conceptual Model of the Geology at 299-E33-46

Borehole 299-E33-46 is located approximately 15 ft from the northeast edge of single-shell
tank 241-B-110. The vertical borehole was installed by using the cable-tool technique between
May 8 and June 26, 2001. Total depth of the borehole was 264.4 ft and groundwater was
encountered at 255.8 ft bgs. Anticipated perched-water conditions were not encountered atop a
fine-grained silt layer at 220 ft bgs. A total of 33 two-ft long, 4-inch diameter split-spoon core
samples were obtained by pushing the sampler out ahead of the advancing casing. Grab samples
were collected between these core sample intervals to yield near continuous samples to a depth
of 78.3 m (257 ft). Eight vadose zone porewater sensor arrays were installed in the borehole at
selected depths prior to removal of temporary casing and decommissioning the borehole.

Each of the 33 split spoon cores contained four 6-in long liners that were opened in the
chemistry lab and geologically described during the sub-sampling process to obtain aliquots used
in the various characterization activities. In addition 54 out of a total of 120 composite grab
samples were also geologically described and characterized.

Three primary stratigraphic units were penetrated by this borehole: 1) backfill materials,
2) the Hanford formation, and 3) the Plio-Pleistocene unit. Backfill material consists of
predominantly dark to olive gray, moderately sorted, silty sandy gravel to gravelly sand, which is
unconsolidated and weakly to strongly calcareous. The backfill extends from the ground surface
to a depth of 11.7 m (38.5 ft).

The Hanford formation is divided into three informal units (H1, H2, and H3). However, it
appears that the HI unit was completely removed during excavation in the vicinity of borehole
299-E33-46, and then later used as backfill. The Hanford formation beneath the backfill consists
of mostly sand separated by several distinctly finer (fine sand to silt) strata. A total of three
moisture spikes occur within the Hanford formation associated with these fine-grained intervals
and/or other interfaces between strata with contrasting grain sizes.

The Hanford formation H2 unit is present between 38.5 to 176 ft bgs. The Hanford
formation H2 unit consists of mostly olive gray, moderately to well sorted, fine- to coarse-
grained sand beds. These beds show occasional weak horizontal laminations and are generally
non-calcareous to weakly calcareous. The most common sediment type within the H2 unit, a
medium-to coarse grained sand is often described as “salt and pepper” sands because of the
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roughly equal amounts of dark- (basaltic) and light-colored (quartz and feldspar) grains.
Dispersed within the Hanford formation H2 unit is four separate, relatively thin (< 2 ft), olive
brown to grayish brown, compact, well-sorted fine sand to silt beds. These occur at depths of
about 69.7, 98.5, 123, and 168 ft bgs.

Below the H2 unit lays the H3 unit, a predominantly coarser-grained gravelly sand sequence
that extends to base of the Hanford formation at 65.5 m (215 ft) bgs. The top of the Hanford
formation H3 unit is defined by a transition from predominantly sand to slightly gravelly sand at
53.6 m (176 ft) bgs. The Hanford formation H3 unit is about 11.9 m (39 ft) thick, the base of
which is defined by the top of the Plio-Pleistocene unit silty facies (PPlz) at 65.5 m (215 ft) bgs.
The H3 unit is unconsolidated and non-calcareous to weakly calcareous. The H3 unit in 299-
E33-46 grades downward into medium to coarse sand with depth.

A fine-grained sediment that we designate as the PPlz unit underlies the basalt-rich sands of
the Hanford formation in borehole 299-E33-46 between 65.5 m (215 ft) and 69.4 m (227.7 ft)
bgs. This unit can be subdivided into two facies types in borehole 299-E33-46. The upper part
of the PPlz unit consists of a pale olive, loose, laminated, very-well sorted, calcareous, fine- to
medium-grained, quartzo-feldspathic sand. The lower part of the PPlz unit consists of a grayish
brown, laminated to massive, compacted and very well sorted, moderately calcareous, silt to silty
fine sand.

The defining characteristics of the sediment from the PP1z unit include its relatively high
calcium carbonate content, uniform texture, and predominantly quartzo-feldspathic mineralogy.
Relatively high neutron moisture and gamma activity on geophysical logs in addition to the core
and grab samples that were visually inspected corroborate that the lower part of the PPlz unit in
this borehole is fine-grained (mostly silt).

A sequence of sandy gravel to gravelly sand was encountered starting at a depth of 69.4 m
(227.7 ft) bgs. This material, designated as the PPlg unit, consists of mostly olive gray, loose,
clast-supported, moderately to poorly sorted mixtures of gravel and sand. This unit contains a
moderate amount (~30-50%) of basalt and is non-calcareous. The PPIg unit extends beyond the
bottom of the borehole, which was terminated at 264.4 ft bgs.

The most striking features in the field logs are several thin zones of increased moisture and a
zone of high total gamma reading. Starting from the ground surface, a zone of increased
moisture appears to conform with a 1.5 ft thick layer of fine sand sandwiched between layers of
coarse sand at 84.0-85.5 ft bgs. A similar spike in neutron-moisture logs occurs in several
nearby tank vadose zone dry wells (20-10-02, 20-07-11, and 20-08-07). Another high-moisture
zone is associated with a thin (0.3 ft) silt layer at 168.1-168.4 ft bgs; a core sample obtained from
this zone yielded almost 20 wt% water in the laboratory. A third increase in moisture lies near a
sand-gravelly sand interface, perhaps associated with some fine and organic(?)-rich layers
(between 185 to 190 ft bgs). A final sharp increase in neutron moisture occurs at a depth
between 220-228 ft bgs associated with the silt-dominated facies (PPLz) of the Plio-Pleistocene
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unit. These three thin lenses may cause significant horizontal spreading of liquid fluxes from the
tank farms.

A few other fine-grained beds are present (i.e., 69.7, 98.5, and 129 ft depths), however these
do not show up as increased-moisture zones on either the neutron-moisture log or in the
laboratory analyses, probably because they are thin (0.5-1.0 cm [0.016-0.03 ft]). These thin fine-
grained beds also probably escaped sub-sampling for moisture in the laboratory.

The total gamma log shows a significant zone, ~12 m (40 ft) thick, of radionuclide
contamination that has been confirmed by laboratory analyses to be Sr-90 occurs at the top of the
Hanford formation H2 unit starting just below the interface with the overlying coarse-grained
backfill. The base of the Sr-90 contamination as defined by bremmstrahlung radiation in the
spectral gamma log is well defined and occurs just above a 0.5 m (1.5 ft) thick very fine sand
layer at 85 ft bgs, which may have acted as a localized perched zone or capillary boundary.

The discharge of large volumes of waste water in the early 1950s, raised the water table in
the vicinity of the 241-B Tank Farm to over 4.9 m (16 ft) above pre-Hanford conditions. Based
on historical well water level measurements, the groundwater reached a maximum elevation of
approximate 124 m (407 ft) MSL in the 1967-68 time frame, with a secondary maximum, just
below this in the 1986-89 time frame. Water levels have declined approximately 7-8 ft since
1989 at a rate of approximately 20 cm/yr (0.7 ft/yr). The maximum water table is estimated to
have reached a depth of about 76.2 m (250 ft) bgs, well below the fine silt PPlz unit that could
act as a perched water table. The geologists logs made during the drilling of 299-E33-46
indicate that the groundwater table was encountered at a depth of 77.9 m (255.8 ft) bgs. This
suggests that the groundwater level has dropped almost 2 m (6 ft) in the vicinity of borehole
299-E33-46 since the late 1980s. There was no sign of perched water in the vicinity of 220 ft
bgs as was found at the borehole drilled east of the BX tank farm, 299-E33-45.

In general, the near horizontal fine-grained thin lenses in the Hanford formation and the
thick Plio-Pleistocene mud unit likely cause anisotropy in water flow. The vertical distribution
of technetium-99, nitrate and tritium in the vadose zone does not readily lead to the observed
concentrations in the groundwater.

5.2 Vertical Extent of Contamination

The following paragraphs describe measurements of various parameters that help us
determine the extent of vertical migration of the tank leak plume. We used several parameters
including electrical conductivity, nitrate, pH, sodium, and technetium-99 concentrations in water
extracts for our main indicators to determine the leading edge of the tank leak plume. The
concentrations of acid-extractable or directly measured constituents in the sediment were used to
delineate the total inventory of constituents within the plume. For technetium-99, the water-
extractable and acid/total concentrations were similar, signifying that this mobile constituent
does remain in the vadose zone porewater and hardly interacts with the sediment.
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Based on evaluating all these measurements, we cannot conclude that the borehole data
establishes the vertical extent of tank contamination.

The moisture content is a direct measure of the mass of fluid in the vadose zone sediment.
One would logically assume that wetter than normal conditions would represent the existence of
leaked tank liquor but as found at most of the boreholes studied, the moisture content is
indicative mainly of grain size. The first region with elevated moisture is the 1.5-ft thick mud
lens at 84 to 85.5 ft bgs [22.86 m] within the Hanford H2 sand unit. Near the bottom of the
Hanford H2 unit at 168 ft bgs is a moist ~0.3 ft thick lens of fine-grained material with moisture
contents of 20.2% by weight. Within the Hanford H3 unit there is a slightly moist lens at 185 ft
bgs with a moisture content of 12.3 wt. % compared to values of 3 to 4 wt % nearby. The PPlz
lithology between 220 and 226 ft bgs is the wettest material in the borehole with moisture
contents ranging from 15 to 29 wt %. The gravels below this PPIz silt are relatively dry down to
the water table that currently is found at 255.8 ft bgs.

The second parameter measured was the pH of water extracts of the vadose zone sediment.
The pH profile shows that between 52 and 83 feet (30.48 and 45.72 meters) bgs (in the Hanford
formation H2 middle sand sequence), there are elevated values [8.5 to 9.5] suggesting the
presence of caustic waste interaction. Below the fine-grained lens at ~84 to 85 ft bgs is another
lobe of slightly elevated pH with values between 8.8 and 9.1. This deeper zone with elevated pH
extends from 96 to 120 ft bgs and is also within the Hanford formation H2 unit. The thin fine-
grained lens at ~85 ft bgs does not show elevated pH or elevated electrical conductivity and thus
appears to be acting as a partial barrier to tank related fluid migration. The observed pH values
are not nearly as high as would be expected for sediment completely saturated with tank liquor.
One plausible explanation for the lower than expected pH is that the pH re-neutralizes with time
from slow dissolution of alumino-silicates or with absorption of carbon dioxide that exists in the
vadose zone air-filled porosity. Both processes would mute the initial pH excursion to high
values over time.

The third parameter that was assessed to estimate the vertical extent of the leak plume was
dilution-corrected electrical conductivity for water extracts. The electrical conductivity profile is
similar to the elevated pH profile in that it shows two regions of high values. The shallower
region of elevated EC starts a bit shallower [at 50.6 ft bgs] than the elevated pH region and
extends down to the thin fine-grained lens at 84-85 ft bgs. The dilution corrected (calculated)
porewater electrical conductivity ranges from 6.5 to 15 mS/cm in this region. The deeper
elevated EC zone extends from 90.6 to 140 ft bgs with calculated porewater conductivities
ranging from 5.7 to 12.75 mS/cm. This zone of elevated electrical conductivity is less
concentrated than the shallow zone and resides within the lower portion of the Hanford
formation H2 unit. The porewaters that were extracted from selected samples using the
ultracentrifuge [UFA] show slightly lower pH values than the 1:1 sediment to water extracts and
the actual porewater electrical conductivity values are often significantly lower than calculated
porewater conductivities obtained by making dilution corrections on the 1:1 sediment to water
extracts. This discrepancy was also found at borehole 299-E33-45 east of the BX-102 tank.
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The fourth parameter that was measured to define the vertical extent of contamination was
nitrate. There is shallow nitrate contamination starting at about 50.6 ft bgs that extends to 77.4 ft
bgs, perhaps reaching the thin fine-grained lens at 84.5 ft bgs. Still within the Hanford formation
H2 unit between the depths of 87.8 and 168 ft bgs is a more concentrated nitrate plume. At 134
ft bgs the highest nitrate calculated porewater concentration is found [~1500 mg/L]. The H2
sediment porewater between 164.5 and 168.5 ft bgs contains ~500 mg/L nitrate. The Hanford
formation H3 sediment also contains elevated nitrate porewater concentrations that vary between
100 to 200 mg/L. The PPlz unit also appears to contain slightly elevated nitrate porewater
concentrations at ~130 mg/L. The 299-E33-46 borehole sediments in the PPlg coarse-grained
unit may also contain elevated nitrate porewater concentrations of ~50 mg/L. Thus the sediment
water extracts from this borehole appear to show elevated nitrate is present all the way to the
groundwater; however the bulk of the nitrate is found in the sediment between the depth of 110
to 168.5 ft bgs in the Hanford H2 sand sequence with values reaching as high as 6.15 g/L or
~0.1M at 47.6 meters (156.2 feet) bgs.

The porewater fluoride concentrations are elevated above the uncontaminated sediment
baseline range of 0.4 to 23 mg/L over a depth region from 50.6 to 111.4 ft bgs. The highest
fluoride porewater concentrations are found between 61 and 83 ft bgs within the Hanford
formation H2 unit at values that range from 110 to 210 mg/L.

The bicarbonate concentration in the porewaters also is elevated in the H2 middle sand
sequence between 75 and 167 ft bgs; both above and within in the same zone with the largest
nitrate concentrations. Interestingly, the bicarbonate distribution in the sediment water extracts
mimics the elevated pH profile suggesting that either dissolution of natural carbonate minerals or
capture of vadose zone carbon dioxide during tank waste fluid neutralization might be the cause.
The porewater bicarbonate maximum concentration varies between 0.1 and 0.21 M between 110
to 130 ft bgs.

The porewater sulfate concentrations appear to be slightly elevated in the deeper depths of
the borehole, rather than within the Hanford H2 unit where tank related fluids are generally
found. The most significant concentrations of sulfate in the shallow vadose zone are found in a
narrow zone within the middle sand sequence of the H2 unit between 140 and 166 ft bgs. No
UFA squeezings were obtained from sediments from this narrow zone and the natural
background sediments in the borehole to the east, 299-E33-338 are also elevated. More puzzling
are the elevated sulfate concentrations in the PPIg lithology at the bottom of the borehole. The
dilution corrected porewater concentrations reach values ~500 mg/L compared to natural
background values of ~40 mg/L.

The porewater chloride concentrations do not appear to be significantly elevated compared
to the nearby natural sediments from borehole 299-E33-338. Thus the observed chloride profile
likely reflects natural conditions. The phosphate porewater distribution in the vadose zone
sediment at borehole 299-E33-46 shows elevated concentrations between ~54.6 and 82 ft bgs
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within the H2 upper sand sequence, the maximum concentrations are found in a thin zone at ~60
ft bgs with a dilution corrected value of 108 mg/L (0.0011 M).

The fifth indicator species used to define the vertical extent of contamination was sodium in
the water extract. Sodium is the dominant cation in tank liquor. The maximum sodium
porewater concentration is about 0.122 M in the zone from 54.6 to 62.1 ft bgs and 0.101 M
between 98 and 120 ft bgs. The three highest porewaters based on electrical conductivity have a
chemical composition that is essentially 0.15 M sodium and 0.13 M bicarbonate, 0.01 M
fluoride, 0.007 M sulfate and 0.003 M nitrate. The actual porewater cation concentrations are in
general always lower than the calculated porewater concentrations derived from dilution
correcting the 1:1 sediment to water extracts.

The depth profiles for the divalent alkaline earth cations calcium, magnesium, and strontium
and show remarkable similarities. All show depleted concentrations over the depth range from
between 50.6 or 52 ft bgs down to 120 ft bgs where the concentrations return to values similar to
those found in uncontaminated sediments. Conversely, the porewater sodium concentration is
elevated from 50.6 ft bgs down to 201 ft bgs in the H3 sand sequence. The cation profiles for the
divalent cations (Ca, Mg, and Sr) and the mono-valent cations (K and Na) are related through ion
exchange reactions wherein the divalent cations that dominant the exchange sites in the natural
sediments are stripped off and replaced by the sodium and potassium (perhaps an impurity in the
sodium hydroxide used at Hanford to neutralize acidic waste streams.

Finally, there also appears to be elevated concentrations of soluble Al and Fe in the shallow
profile between 52 and 70 and 52 and 80 ft bgs, respectively. Soluble Si also appears elevated
in discontinuous zones between 52 and 120 ft bgs. These zones of high readily water soluble Al,
Fe, and Si may represent amorphous reaction or weathering products from tank waste
interactions with the vadose zone sediments.

Potassium-40 was the only gamma-emitting isotope quantitated in the profile, but the
bremsstrahlung radiation was observed between the depths of 46 and 89 ft bgs. The uranium-
238 activity was below the GEA detection limit for the entire vadose zone profile suggesting low
concentrations are present. No detectable gamma emitting fission products such as '*'Cs, *“Eu,
134Eu, 12Sb, or the activation product “’Co, that are often observed in the field logging of the dry
boreholes around Hanford’s single shell tanks were observed in the sediments.

Strontium-90 is considered to be the primary radionuclide released from tank B-110 transfer
line and is concentrated in the sediment between 19 and 28 m (62 and 83 ft) bgs at
concentrations between 1,000 and 11,250 pCi/g. Strontium-90 in the sediments is not readily
water leachable with distilled water and several hours contact. In general the water leach and
total acid leachable Sr in the vadose zone sediments suggest that the in-situ desorption Kd value
is >100 ml/g for the diluted 1:1 sediment to water extract solution.
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All the technetium-99 data in the shallow depths is suspect thus it is difficult to determine if
the technetium profile at 299-E33-46 from the tank B-110 transfer line leak can be traced from
below the tank all the way to the groundwater and whether B-110 is the source of technetium-99
in the deep sediments and groundwater. Other sources could be nearby crib discharges. If we
put credence in the technetium-99 depth profile, then simple steady-state recharge analyses
suggest that the slight technetium-99 peak in the H2 unit at ~132 ft bgs is where the transfer line
leak has migrated to over the last 30 years. The two apparent more concentrated peaks of
technetium-99 found in the deep H3 unit and the PPlz unit would require unrealistically high
recharge rates to have been occurring in the last 30 years to drive the technetium to these depths.
It is more likely that the technetium found at the deeper depths is from some horizontal migration
of fluids containing technetium-99 from other sources that was carried to depth by active
disposal of large quantities of contaminated water or some other driving force such as domestic
water line leaks, recharge from topographic lows for snow melt etc.

There are elevated concentrations of uranium in the vadose zone pore water between 50.6
and 120 ft bgs (within the upper sand sequence of H2). There is no indication of elevated
uranium in the H3 unit, PPlz or PPIg units.

In summary, the moisture content, pH, electrical conductivity, fluoride, sulfate, phosphate,
sodium, strontium-90 and uranium profiles do not identify the leading edge of the plume. The
profiles of only nitrate, suggests that the leading edge of the plume could have reached the water
table at borehole 299-E33-46; however horizontal migration of nitrate rich waters in the PP1z
unit might be the cause of the higher than background nitrate concentrations in the deep vadose
zone profile. The majority of the tank fluids still resides in the shallow Hanford H2 sand unit.

5.3 Detailed Characterization to Elucidate Controlling Geochemical
Processes

The more detailed characterization activities of the cores from 299-E33-46 borehole added
some insight on the processes that control the observed vertical distribution of contaminants and
on their migration potential into the future. The first key finding was that the 1:1 sediment to
water extracts are a reasonable estimate of the porewater chemistry in the vadose zone sediment.
We extracted porewater from eleven sediment samples using high-speed centrifugation. The
chemical composition of the actual porewater was found to be adequately estimated by dilution
correcting the 1:1 water extracts. Because it is much easier to obtain a water extract of the
vadose zone sediment this finding is important to understanding the porewater chemistry
throughout the vadose zone plumes under disposal facilities and leaking tanks. Constituents that
showed the best agreement include electrical conductivity, nitrate, sodium, and technetium.

The porewaters in the sediment from the cores in the Hanford formation unit (H2) were
dominated by sodium and bicarbonate. The three most concentrated porewaters based on
electrical conductivity have a chemical composition that is essentially 0.15 M sodium and
0.13 M bicarbonate, 0.01 M fluoride, 0.007 M sulfate and 0.003 M nitrate. The actual porewater
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cation concentrations are in general always lower than the calculated porewater concentrations
derived from dilution correcting the 1:1 sediment to water extracts. These concentrations are
more dilute than porewaters found at 299-E33-45 east of the BX-102 tank and much more dilute
than porewaters under the self boiling REDOX waste tanks in SX tank farm that reached 16 to
17 M sodium nitrate with one molar concentrations of calcium, 0.5 M chromate, and several
tenths molar chloride, magnesium, potassium, and sulfate. There is also a faint indication that
water extractable uranium is elevated in the vadose zone pore water between 50.6 and 120 ft bgs
(within the upper sand sequence of H2). There is no indication of elevated uranium in the H3
unit, PP1z or PPIg units.

There is no indication that there are elevated concentrations of RCRA metals in acid or
water extracts from 299-E33-46 borehole sediment.

The water-extractable major cations suggest that an ion-exchange process dominates the
porewater/sediment interactions where tank fluid passed by or currently exists. The depth
profiles for the divalent alkaline earth cations calcium, magnesium, and strontium and show
remarkable similarities. All show depleted concentrations over the depth range from between
50.6 or 52 ft bgs down to 120 ft bgs where the concentrations return to values similar to those
found in uncontaminated sediments. Conversely, the porewater sodium concentration is elevated
from 50.6 ft bgs down to 201 ft bgs in the H3 sand sequence. The cation profiles for the divalent
cations (Ca, Mg, and Sr) and the mono-valent cations (K and Na) are related through ion
exchange reactions wherein the divalent cations that dominant the exchange sites in the natural
sediments are stripped off and replaced by the sodium and potassium (perhaps an impurity in the
sodium hydroxide used at Hanford to neutralize acidic waste streams.

5.4 Estimates of Sorption-Desorption Values

In this section, we discuss our measurement and data synthesis used to quantify the
adsorption-desorption values for the major contaminants found in the sediment at 299-E33-46
borehole. We estimated the K for various contaminants using one method. By combining the
data from the dilution corrected 1:1 water extracts, which represent the porewater, with the
activities measured on the sediment, we can get a semi-quantitative sense of what the desorption
Kqis. For a contaminant that has very little water-soluble mass, such as cesium-137, the K4 can
be approximated as the amount of mass in the total sample per gram of dry sediment divided by
the amount of mass in the porewater per milliliter. For a contaminant that is quite soluble in the
water extract (~equivalent to saying that the contaminant resides mainly in the porewater within
the sediment), one needs to subtract the amount that was water extractable from the total amount
present in the moist sediment sample to obtain a value for the amount that would remain on the
solid at equilibrium with the pore fluid.

Using these measured distributions, the in-situ desorption Kq4 for strontium-90 was
consistently > 100 ml/g. The technetium-99 desorption data were not of sufficient quality to
determine quantitative values because of the low concentrations present but we do not believe
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that the technetium-99 is adsorbing to the sediments. Therefore a desorption K4 of zero,
meaning that the technetium-99 is not interacting with the sediment, should be assumed. The
technetium in-situ desorption K4 data are consistent with a wealth of literature that finds
essentially no technetium adsorption onto Hanford Site sediment (Kaplan and Serne 1995;
Kaplan and Serne 2000).

A second method of determining K4 values would be laboratory batch tests. Batch
desorption tests were performed for strontium-90 for several time periods using numerous
solutions by the by the Science and Technology Program (see Appendix D in the B-BX-BY FIR
(Knepp 2002).

5.5 Other Characterization Observations

The ratio of one ostensibly mobile species to others in the porewaters can be used to
determine relative mobilities. If the absolute concentrations of co-migrating species are changed
solely by dilution with existing porewater, then the ratio of the two should remain constant.
Unlike similar ratio discussions for other contaminated boreholes (SX-41-09-39 and
299-W23-19; see Serne et al. 2002b and 2002d), the ratios for the porewaters from borehole
299-E33-46 are not constant. It is likely that the low absolute concentrations of constituents such
as technetium-99 and relatively low concentrations of nitrate and uranium cause the ratio
approach to be compromised by analytical error.

Further, the dilution corrected porewaters in general do not appear to be of the same
composition as this estimate for Sr recovery waste. The technetium-99 concentrations found in
the porewaters are generally much lower than those that should be found in Sr recovery waste.
Compared to the fluoride found in the porewater both the technetium-99 and nitrate are too low
based on Larson’s estimates of the chemical composition of Sr recovery waste.

The percentage of the total sediment metal concentrations that is acid extractable from the
contaminated sediment is slightly higher than for uncontaminated sediment for only sodium.
The anthropomorphic sodium does show a higher percentage of the total concentrations are acid
extractable from the sediment between 53 and 69.5 ft bgs compared to uncontaminated sediment.
Except for the sodium results, we expected there to be a larger increase than was observed for the
contaminated sediment suggesting that the comparison of percentages of the total composition of
any element that is acid extractable is not a very sensitive indicator of the presence of tank
liquors or its reaction products with vadose zone sediment. More discussions on looking for
alteration products is found in the mineralogy section.

As part of our characterization of the contaminated sediment, parameters that can control
contaminant migration were measured. Key parameters that were measured on the borehole
sediment include the calcium carbonate content, particle size distribution, and bulk and clay size
mineralogy.
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Particle size measurements showed that the fine grained thin lens at 84 ft bgs within the H2
unit has at least 6.5% silts and sands compared to most of the Hanford formation that is ~ 90 to
95 % sand. The middle and lower portion of the PP1z unit also contains a high percentage of
fines.

There is no evidence of rich calcareous zones in the entire profile such is found underlying
the PPlz unit in 200 West Area. The calcium carbonate content of the Hanford formation
sediments vary between 0.6 to 2.6 % by weight with an average of 1.3 0.4 wt %. The fine
grained PP1z mud shows slightly higher calcium carbonate, averaging 1.7 % by weight. The
coarse grained PPIg contains the least calcium carbonate (average 0.475%by weight).

As found for uncontaminated sediment from outside other tank farms, the Hanford
formation sediment is dominated by silica and alumina. Calcium, carbonate, iron, magnesium,
potassium, sodium, and titanium make up most of the rest of the oxides.

XRD analysis of the 11-bulk sediment samples from borehole 299-E33-46 shows the
samples to all have a similar mineralogical signature. Quartz concentrations in the bulk
sediments ranged from 22.4 wt-% to 43.5 wt-%, with an average concentration of 3346 wt-%.
The bulk sediments contained plagioclase feldspar concentrations from 10 to 34 wt-% and
potassium feldspar content measured between 8 to 37 wt-%. The borehole sediment contained
plagioclase feldspar concentrations from 10 to 34 wt-% and potassium feldspar content measured
between 8 to 37 wt-%. Plagioclase feldspar was more abundant than potassium feldspar in all
but three samples. Over all, the feldspar content (both plagioclase and alkali feldspars) averaged
about 43+6 wt-%. The amphibole phase comprised <9 wt-% at most, with the majority of
samples having concentrations in the 2 to 4 wt-% range. Clay minerals identified in the whole
rock sediment included mica and chlorite. Mica concentrations ranged from a low of 6.5 wt-%
to a high of 32 wt-%, with most of the intervals having concentrations between 7 and 15 wt-%.
Chlorite concentrations were <7-wt% in all sediments analyzed with the exception of two
samples in the Plio-Pleistocene Mud Unit that contained 11.7 and 21.2 wt-% chlorite,
respectively.

The clay fraction is dominated by four clay minerals: smectite, chlorite, illite, and kaolinite
with minor amounts of quartz and feldspar. Semi-quantification results of the clay minerals in
the < 2 micron fraction showed that smectites ranged in concentrations from a low of 22 wt-% to
a high of 50 wt-%. Illite amounts varied from 30 to 56 wt-% with the majority of samples
having concentrations in the 40 to 50 wt-% range. Chlorite and kaolinite were the least abundant
of the clay minerals identified in the samples with concentrations equal to or less than 20 wt-%
and 9 wt-%, respectively. Quartz and feldspar minerals were present as trace amounts in the clay
fraction.
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No evidence of mineral alteration or precipitation resulting from the interaction of the tank
liquor with the sediment was observed based on the x-ray diffraction measurements. However,
SEM scans, which are much more sensitive and more appropriate for finding subtle indications
of caustic attack were not performed.

The matric potential of all cores samples from 299-E33-46 from the surface to the water
table was determined by the filter paper method. For 299-E33-46, the water potential is much
less than the gravity potential from the surface down to 70 m (230 ft) excepting one data point at
about 145 ft bgs, which appears to be a bad data point. The general trend is that the water
potentials are consistent with a draining profile (water potentials wetter than -0.01 MPa). Below
71 m (233 ft) and to the water table at ~78 m (~255.8 ft), there appears to be a drier condition
than above that depth. But these lower depths contain coarse materials, so sample handling (e.g.
drying) may be responsible for the apparent drier matric potentials. In any case, it appears that
borehole 299-E33-46 has a matric potential profile that strongly suggests drainage is occurring.

A series of instruments was placed in the vadose zone sediments at borehole 299-E33-46 as
the casing was being pulled out of the ground in July and August 2001. The sensors are used for
continuous monitoring of vadose-zone hydraulic properties and porewater at and beneath the
surface of the tank farm. Vadose zone porewater has been extracted from suction candles
periodically. Porewater extracted ~three to seven months after sensor installation shows that the
waters are gaining dissolved salts. The chemical composition of the porewaters obtained through
the suction candles for some constituents appears to be reaching a steady state value most similar
to the porewaters obtained out of the core materials using the ultra centrifuge. Further, the trends
versus time for the chemical evolution of any given constituent shows variation with depth; that
is the chemical evolution is not the same for a constituent at all depths. Most of the variation in
composition versus time is not analytical vagaries but must reflect actual variation because
duplicate samples are showing excellent reproducibility. It will be interesting to follow the
evolution of the chemical composition of the porewater with time and to attempt to correlate the
variations with other data being collected from the other sensors deployed at the same depths. In
general, the suction candle generated porewaters show pH values at 53 and 82 ft bgs that are
higher than in the rest of the borehole profile suggesting the presence of caustic fluid from the
tank. The electrical conductivity of the suction candle samples is highest for the 53 ft bgs depth
and at 82 ft bgs is higher than the rest of the shallower and deeper profile suggesting that the
contamination plume is still located between these depths. There is high fluoride at 82 ft bgs that
is not increasing with time. The nitrate concentrations in the suction candle samples is
increasing versus time below 82 ft bgs and is highest at 218 ft bgs. The sulfate concentration is
also increasing versus time and is high between the depths of 53 and 218 ft bgs. The suction
candle sulfate values are much higher than the UFA squeezed porewaters and the dilution
corrected water extract values. There may be sulfate in the materials used to pack around the
sensors or in some of the sensors themselves. The technietium-99 suction candle values are high
at both 218 and 226 ft bgs and much lower above suggesting that either the technetium plume
has been pushed into the Plio-Pliestocene mud unit from above or horizontally for other sources
than the B-110 tank transfer line leak.
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The technetium-99 to nitrate ratio in the groundwater at 299-E33-46 is much lower than in
the overly vadose zone porewaters suggesting that the groundwater has been diluted with waters
with another source of nitrate if the technetium-99 has entered the groundwater from vertically
descending through the vadose zone sediments.

It is thus not clear that the source of the contamination for any constituent in the
groundwater obtained before borehole 299-E33-46 was decommissioned is from the vadose zone
sediments near tank B-110.
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Appendix A

299-E33-46

Geologic Descriptions of Split-Spoon and Grab Samples Performed
During Core/Sample Opening In PNNL Laboratory
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Appendix B-1

299-E33-46
Splitspoon Core
Sample Photographs

The following photographs were taken during the opening of the samples for performing the
geologic descriptions and for aliquoting for chemical analyses. The photographs are sequenced from
shallow depths to deeper depths. On the figure and in the captions we show the sample number
designation, the orientation of the picture/core sample, the depth interval below ground surface that the
sample represents and the lithology name assigned to the sample.
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Correlation Of Spectral Gamma Log Response
and *’sr Concentration for a Steel — Cased Borehole

RG McCain & CJ Koizumi
MACTEC-ERS
May 31, 2002

Executive Summary

In passive gamma-ray logging, the presence of anomalous gamma activity without detectable spectral
lines associated with specific radionuclides may indicate the presence of a high-energy beta-emitting
radionuclide such as *°Sr. Brodzinski and Nielson (1980) described a means of estimating *’Sr
concentrations by measurement of bremsstrahlung radiation in the 60-236 KeV range. Baseline spectral
gamma logging in the 241-B tank farm detected anomalous incoherent gamma activity with no
identifiable gamma lines in several boreholes north and east of tank B-110. It was suggested in the B
Tank Farm Report that this activity represented a probable subsurface plume of *’Sr. Subsequently,
laboratory analysis of soil samples from a new borehole (299-E33-46 / C3360) drilled in this region
confirmed the presence of *’Sr. Concentrations as high as 11,000 pCi/g of dry sediment were reported.
Spectral gamma log data from this borehole are compared to sediment *’Sr values measured by acid
extraction and liquid scintillation counting. Shape factor analysis (Wilson, 1997, 1998) is shown to be
useful in identifying zones of probable *’Sr and a correlation between net counts in the 60 — 350 KeV
range and *’Sr concentration is established for the specific casing configuration. Recommendations are
made for additional investigations to more fully investigate the nature of the bremsstrahlung phenomena
with respect to cased boreholes, and to determine the effect of casing thickness on bremsstrahlung
radiation inside the casing,

Background

During characterization logging in the 241-B Tank Farm, the SGLS detected anomalous
incoherent gamma activity in boreholes northeast of tank B-110. Specifically, boreholes 20-10-02, 20-08-
07 and 20-07-11 exhibited intervals of anomalous gamma activity with no evidence of well-defined
energy peaks that would be diagnostic of specific radionuclides. Figure C.1 shows a combination plot for
borehole 20-10-02. Note the anomalous total gamma activity between approximately 69 and 85 ft bgs in
both the SGLS total gamma log (the fifth plot) and the Tank Farms gross gamma log (the sixth plot).

This anomaly does not appear to be related to either man-made radionuclides or variations in natural
radionuclides. Figure C.2 illustrates two typical spectra from borehole 20-10-02. Spectrum 3A2A1076
(60 ft) is typical of an uncontaminated portion of the borehole. Spectrum 3A2A1036 (80 ft) is an example
of anomalous gamma activity. Note that there are no clearly defined gamma energy peaks other than
those associated with natural radionuclides. Both represent approximately the same concentrations of
natural radionuclides, and yet 3A2A1036 has a gross count rate approximately 3 times that of 3A2A1076.
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Note that the bulk of the difference in counts occurs as incoherent gamma counts below approximately
600 KeV. Brodzinski and Nielson (1980) and Wilson (1997) suggest that these incoherent counts may
result from bremsstrahlung associated with the interaction between high-energy beta particles from
“Sr/”"Y decay and the steel casing. In the B tank farm report (DOE, 2000) it was postulated that a
subsurface zone of *°Sr contamination had been encountered in this borehole and others in the vicinity.

Borehole (C3360 or 299-E33-46) was drilled in May 2001 to investigate this region and collect samples
for laboratory analysis. *°Sr concentrations in samples at selected depths have been determined (see Table
4.10 in the main text). The depth interval from 50 to 120 ft in borehole 299-E33-46 was logged with the
SGLS, and man-made gamma-ray-emitting nuclides were determined to be absent, or present in
negligible concentrations. Thus, emissions from such nuclides did not introduce significant extraneous
spectral background. The photons in the borehole that were not due to natural radioactive sources were
bremsstrahlung created by collisions and accelerations of the beta emissions from *°Sr/”’Y decay. The
borehole logging data was used test theories about the bremsstrahlung contributions to passive gamma-
ray spectra, and the correlations of such bremsstrahlung signals to the *°Sr concentrations.

The guide to the investigation was work by R.D. Wilson on spectral shape factor analysis, most of which
is reported in Wilson (1997) that presents results of model studies using the MCNP radiation transport
code and model experiments. Unfortunately, in relation to Wilson’s work, borehole 299-E33-46 is an
imperfect for this investigation, for at least two reasons:

e The borehole casing in Wilson’s MCNP model was 0.313-inch-thick steel, whereas the steel
casing in borehole 299-E33-46 is 0.514 inches thick. The effect of casing thickness on generation
and transmission of bremsstrahlung gamma rays is unknown.

e The beta source in Wilson’s MCNP model was “distributed uniformly 2 cm radially into the
formation and extended & 15.24 cm (% 6 in.) axially” (with respect to the center of the gamma-ray
detector), whereas the *°Sr distribution outside borehole 299-E33-46 appears to be somewhat non-
uniform.
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Shape Factor Analysis

The technique of shape factor analysis is described in Wilson (1997 & 1999). This technique
was developed as a means to assess the distribution of '*’Cs and “°Co with respect to the borehole
axis. For both *’Cs and “’Co, a shape factor, SF1 was defined as the ratio between the energy
peaks and the increased spectral noise due to Compton scattering. SF1 is sensitive to spectral
differences for a borehole-confined source, a source uniformly distributed in the formation, and a
remote source. However, it is only valid when the respective contaminant is present and has no
bearing on identification of *’Sr. It will not be discussed further in this document. Another shape
factor was defined to assess the distribution of counts in the low-energy continuum:

counts(60—350Kel)

SF2 = (Wilson, 1997)
counts (350—-650Kel)

This factor is sensitive to differences in the scattered portions of the spectrum from gamma
emitters and from bremsstrahlung sources. In particular, SF2 is capable of identifying the
presence of low-energy bremsstrahlung radiation from the decay of *°Sr/”’Y and is able to
distinguish this spectral effect from the enhanced low-energy response obtained from remotely
located "*'Cs and “°Co. Wilson’s model studies indicated that “for virtually all gamma-emitting
contaminants and for all possible source distributions, SF2 never exceeds a value of about 5. An
SF2 value greater than 5 is evidence for the presence of a bremsstrahlung-producing energetic
beta emitter, such as *’Sr/’Y.” (Wilson et al, 1997). Other reports (Wilson, 1997 and
Wilson, 1999) have suggested that SF2 values may be as high as 20 in zones with significant *’Sr
concentration.

Figure C.3 shows the shape factor log for borehole 20-10-02. Note that within the region of
anomalous total gamma activity between 69 and 85 ft bgs, SF2 attains a value of approximately 8.
In this log, SF2 is calculated from counts in the two spectral windows after the contribution from
naturally occurring radionuclides has been removed. This leads to the erratic behavior of SF2 in
uncontaminated intervals.

RESULTS FROM BOREHOLE 299-E33-46

Figure C.4A shows a plot of total gamma count rate and count rate in the 60-350 KeV
range for the 50 to 120 ft depth interval in borehole 299-E33-46. Figure C.4B shows laboratory
measured *Sr concentrations plotted at the same depth scale. Figure C.4C shows SF2 and SF2*
calculated as the ratio between counts in the 60-350 KeV range and counts in the 350-650 KeV
range. SF2 is calculated using count rates corrected for natural radionuclides, while SF2* is
calculated using gross (uncorrected) counts in the two energy windows. There appears to be a
correlation between laboratory *’Sr concentrations and either total gamma count rate or count rate
for 60-350 KeV. Furthermore, SF2* has a value of about 3.3 to 3.6 in uncontaminated areas,
rising to greater than 6 in intervals of high *Sr.

Figures C.5a and 5b display two HPGE spectra from borehole 299-E33-46. Both figures
show the same two spectra; counts (vertical axis) are plotted on a log scale in Figure C.5a, and on
a linear scale in Figure C.5b. The upper spectrum (named FOCA1024.S0) was recorded at a
depth of 62.0 feet bgs, where the *’Sr concentration was 11245 +363 pCi/g. The lower spectrum
(named FOCA1100.S0) was recorded at a depth of 100.0 ft bgs, where the *Sr concentration was
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zero, or close to zero. The full energy peaks are all associated with natural background; the peak
for the 1460.8-keV gamma ray of *’K, and the peak for the 2614.5-keV gamma ray of **T1 are
labeled. Because spectrum FOCA1024.S0 contains no evidence of man-made gamma-ray
emitters, the offset relative to spectrum FOCA1100.S0 is presumably due to bremsstrahlung
associated with *’Sr beta emissions.

Spectrum FOCA1024.S0 seems generally consistent with Wilson’s MCNP simulation, which
indicated that most of the bremsstrahlung contribution would appear in the part of the spectrum
below 500 keV (see Figure 8 in Wilson’s report).

Although the shape of spectrum FOCA1024.S0 more or less agrees with Wilson’s model, the
gross count rate apparently does not. Spectrum FOCA1024.S0 has a gross count rate equal to
2713.12 ¢/s, and spectrum FOCA1100.S0 has a gross count rate of 162.82 c/s. Since
FOCA1024.S0 has a *°Sr contribution, but FOCA1100.S0 does not, the difference of 2550.3 ¢/s
would seem to be attributable to the *°Sr contribution (assuming the potassium-uranium-thorium
background is more or less uniform). The *Sr concentration corresponding to FOCA1024.S0
was 11245 pCi/g, meaning that the measurement sensitivity to *°Sr was about 0.23 ¢/s per pCi/g.
This is almost an order of magnitude higher than the value of 0.028 c/s per pCi/g that Wilson
estimated.

Because the sensitivity was in substantial disagreement with Wilson’s estimate, the
sensitivity was recalculated using 22 spectra from *°Sr-contaminated depths. A background gross
count rate of 159.3 + 13.4 c/s (uncertainty = + 26) was determined by calculating the average
gross count rate of the spectra from depths below 90 feet, where the *’Sr concentrations were
zero, or close to zero. The background was subtracted from each of the 22 spectra, then each
gross count rate was divided by the associated *’Sr concentration. The average of the sensitivity
values was 0.26 = 0.18 c/s per pCi/g, which agreed with the initial finding.

SF2 for FOCA1024.S0 was calculated by subtracting counts from FOCA1100.S0 in each
channel, computing the sums of the remainder over 60-350 KeV and 350-650 KeV, and dividing
the two numbers. SF2* was calculated by dividing the total counts in the same channel ranges.
SF2 was found to be 6.61 and SF2* was found to be 6.34. These values are somewhat lower than
those encountered in dry well 20-10-02, and considerably lower than the value of 20 suggested by
Wilson’s model studies. This discrepancy may be due at least in part to the greater casing
thickness. The maximum range of a 2.28 MeV beta particle from the daughter product *°Y in iron
is estimated to be on the order of 0.06 inches. This suggests that incident beta radiation only
interacts with a relatively thin outer layer of the casing, and that the remaining casing material
simply attenuates the bremsstrahlung gamma activity. Since lower-energy gamma rays are
attenuated to a greater degree, this would result in a lower value of the SF2 ratio in thicker casing.

In spite of the sensitivity discrepancy, and differences between Wilson’s MCNP model and
the casing thickness and **Sr distribution presented by borehole 299-E33-46, values for several
parameters were calculated from the SGLS spectra, and correlations between these parameter
values and the *°Sr concentrations were investigated.
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FIGURE C.4 Logging Data for Borehole 299-E33-46 versus Depth. (A.) Total Gamma;
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Borehole 299-E33-46. Top has counts on log scale and bottom has counts on linear scale.
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Spectra from various depths, mostly where *°Sr was present, were analyzed as follows.
Count rates for two spectral windows were calculated, 60 keV to 350 keV (window 1) and 350
keV to 650 keV (window 2). Both windows are corrected for background using stripping factors
based on the K-40, U-238 and Th-232 peaks. The ratio of the corrected rate for window 1 to the
corrected rate for window 2 is Wilson’s shape factor 2 (SF2). SF2 is plotted in relation to *Sr
concentration in Figure C.6. Also plotted in Figure C.6 is a “modified” SF2, designated SF2*,
which is the ratio of total counts in window 1 to total counts in window 2. Note that both SF2
and SF2* increase with increasing *°Sr. Both are greater than 5 when *’Sr concentrations are
greater than 1000 pCi/g, and both seem to reach a maximum value between 6 and 7. At low *°Sr
concentrations, however, SF2 varies widely, while SF2* seems to have a relatively stable value
between 3.3 and 3.6. From a mathematical perspective, this behavior should be expected: in
intervals with no contamination, the corrected values for windows 1 and 2 should be close to
zero, or even slightly negative. Division of two numbers close to zero can result in unpredictable
results. At high *°Sr concentrations, the counts due to bremsstrahlung dominate the spectra, and
subtraction of background has little effect. In borehole 299-E33-46, one could infer that values of
SF2 (or SF2*) greater than 5 indicate the presence of *°Sr, while values less than 4 indicate that
“Sr concentrations are less than 500 to 1000 pCi/g. For spectra where no *Sr is present, SF2*
appears to be preferable, since it approaches a relatively stable value. Figure C.4C shows both
SF2 and SF2* plotted as a function of depth. Note that SF2 is only stable where *’Sr is present,
while SF2* achieves stable values in both the contaminated interval and the uncontaminated
interval.

Examination of Figure C.6 indicates that neither SF2 or SF2* appears to be useful as a
quantitative indicator of *°Sr concentration. Over the range of about 500 to 5000 pCi/g, it appears
that both shape factors do increase with increasing *°Sr content, but above about 5000 pCi/g, SF2
and SF2* values remain relatively constant. This behavior can be explained by the fact that both
numbers are ratios. Below about 500 pCi/g, the contribution to the gamma spectrum from
bremsstrahlung associated with *’Sr/*Y decay is relatively minor. The behavior of SF2 is erratic,
because counts due to background have been removed and only “noise” is left to calculate the
ratio. SF2* assumes a stable value, which represents the ratio based on typical levels of natural
radionuclides. Between about 500 and 5000 pCi/g, the bremsstrahlung contribution becomes
increasingly more important and the ratio changes. Above about 5000 pCi/g, the bremsstrahlung
contribution dominates the spectra; counts in both windows increase proportionately, and both
SF2 and SF2* exhibit little or no change with increasing concentration.

Count rates are more likely to exhibit a correlation with *Sr concentration over a wider
range. Figures C.7 and C.8 show total gamma count rate and count rate in the 60 to 350 KeV
energy range plotted as a function of *’Sr concentration. Each figure shows both the total or gross
count rate, as well as the net count rate after subtraction of background. The values plotted
against *Sr concentration are based on a 3-point average of the SGLS data, centered on the
midpoint depth of the sediment sample analyzed in the lab. Also shown on Figure C.7 is a line
corresponding to the sensitivity of 0.26 cps/(pCi/g) determined above. This shows reasonable
agreement with the net count values.
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However, the total count rate is subject to variation associated with the presence of any man-
made radionuclides or with variations in natural radionuclide concentrations.

The results of model studies (Wilson, 1977) indicated that the bulk of the gamma activity
associated with bremsstrahlung occurs in the 60 to 350 KeV window. Following Wilson’s
method, the net counts in this window can be determined by subtracting the background
associated with the natural radionuclides *K, ***U, and ***Th, using stripping ratios developed by
Koizumi and reported by Wilson (1997). The “net cps (60-350 KeV)” plotted in Figure C.8 are
determined in this manner. With one exception, this plot shows a strong linear trend. A least-
squares regression was used to estimate the sensitivity of SGLS net counts in the 60-350 KeV
energy window to *°Sr concentration. It was determined that:

Nossorer, = 0.19xC (R* =0.874)

0 5

Where N is the net count rate and C is the *’Sr concentration in pCi/g. This relationship is
plotted as a line on Figure C.8. It can be re-arranged to:

Cy. = 5'24XN(607350K6V)

0 5

This relationship was developed for a borehole casing thickness of 0.514 in. Since the nature
of bremsstrahlung generation associated with the interaction between high energy beta particles
and steel casing is poorly understood, the equation above should not be used where the casing
thickness is significantly different from 0.514 in.

Conclusions

Analysis of borehole spectral gamma measurements and laboratory determination of 90Sr
concentration in vadose zone sediment samples from borehole 299-E33-46 (C3360) has shown
that relationships exist between SF2 and sediment 90Sr concentration and between net counts in
the 60 to 350 KeV energy window and sediment 90Sr concentration. Comparison of the borehole
logging data and laboratory measured sediment 90Sr data resulted in the following findings and
observations:

e The borehole casing in Wilson’s MCNP model was 0.313-inch-thick steel, whereas the
steel casing in borehole 299-E33-46 is 0.514 inches thick. The effect of casing thickness
on generation and transmission of bremsstrahlung gamma rays is unknown.

e The beta source in Wilson’s MCNP model was “distributed uniformly 2 cm radially into
the formation and extending + 15.24 cm (+ 6 in.) axially” (with respect to the center of
the gamma-ray detector), whereas the *°Sr distribution in the sediment in the formation
outside of the borehole 299-E33-46 casing appears to be non-uniform axially and of
undetermined radial distribution, but most certainly larger than 2 cm.

e  Only the borehole interval from 50 to 120 ft bgs was used for the comparison studies.
The entire borehole was logged, but other intervals were logged with slightly different
equipment and procedures. Variations in logging system response would complicate the
comparison of log data and laboratory derived sediment values.

e Comparison of gamma spectra from intervals of high *’Sr concentration with spectra
from low concentration intervals indicated that bremsstrahlung associated with *’Sr decay
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resulted in greatly increased low energy counts, with the bulk of the activity below 350
KeV.

After subtracting background, total gamma counts from the logging detector were
compared to *’Sr concentrations in sediment from the same depths. The average
sensitivity was found to be approximately 0.26 cps per pCi/g. This is almost an order of
magnitude higher than the value of 0.028 c/s per pCi/g predicted by Wilson, 1997.

SF2 values on the order of 6 to 8 indicate the presence *’Sr concentrations greater than
1000 pCi/g in the sediments interrogated by the logging tool. Wilson (1997) predicted the
existence of a correlation between *°Sr concentration and SF2, but the observed
correlation does not fully conform to Wilson’s expectations. Wilson’s MCNP model
predicted SF2 values greater than 20 in the presence of *°Sr in the sediments outside the
casing in model configurations.

A modified shape factor, SF2*, is defined as the ratio between total counts in the 60-350
KeV and 350-650 KeV windows. Because background is not subtracted, SF2* tends to
remain stable in the absence of contamination. SF2* assumes a value between 3.3 and 3.7
in uncontaminated intervals and increases to greater than 6 in intervals with high *Sr
concentration. For *’Sr concentrations on the order of 500 to 1000 pCi/g, SF2* values are
transitional between 3.7 and 6.

Cross-plots of SGLS total gamma vs *’Sr concentration in the sediment show a linear
trend, particularly when total counts are corrected for background. However, total counts
are affected by the presence of man-made radionuclides, as well as by variations in
natural radionuclides.

Cross-plots of SGLS total counts and net counts in the 60 to 350 KeV energy range vs
“Sr concentration in the sediments also show a strong linear trend. For this energy
window, background counts can be estimated from the 1461, 1764 and 2615 KeV peaks,
using stripping ratios developed by Koizumi. The net counts show a good correlation
with *°Sr concentration. The sensitivity is about 0.19 cps per pCi/g. It is possible that
similar corrections could be made for limited amounts of '*’Cs and “’Co, using stripping
ratios estimated from modeling and shape factor experiments. This would allow *’Sr
concentrations to be estimated in the presence of other gamma emitting contaminants.

Recommendations

The results of this study and previous experience in B tank farm and elsewhere indicate that,
at least in the absence of other gamma emitting contaminants, *°Sr can be detected by spectral
gamma logging in steel-cased boreholes. It also appears that quantitative *’Sr concentrations can
be estimated, at least to an order of magnitude accuracy. Unfortunately, there are a number of
unknown factors that must be investigated before a widely applicable gamma spectra-to-""Sr in
sediments relationship can be established. Specific recommendations for future work include the
following:

Conduct experiments to investigate the nature of gamma ray generation and transmission
associated with bremsstrahlung.
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Discrepancies exist in the relationship between *’Sr concentrations and gross gamma
count rate, and in the behavior of SF2 in the presence of ’Sr. In both cases, the
relationship observed in the field differs significantly from predictions based on radiation
transport modeling. These discrepancies may be due to the difference in casing
thickness, or to errors in the way bremsstrahlung is addressed in the model. A relatively
simple experiment could be set up to investigate the effects of casing thickness on gamma
activity from bremsstrahlung. Gamma spectra would be recorded from a detector placed
a short distance from a *Sr source. Steel plates with various thicknesses between about
0.25 and 1.0 inches would be placed between the source and the detector, and the data
would be evaluated to determine the effect of casing thickness on gamma detector
response. This experiment would also be modeled with the radiation transport code and
model results compared to measurement data.

e Perform additional modeling to investigate the effects of casing thickness, *°Sr
concentrations, and the presence of other radionuclides on spectral gamma response.

The borehole geometry with a distributed source is much more difficult to construct in a
physical model, but numerical modeling can be performed to estimate response.

e (Collect additional sample data where possible and log all boreholes in which samples
containing elevated *’Sr concentrations are encountered.

Comparison of borehole log data and laboratory measured sediment *°Sr data in multiple
boreholes will help validate the model predictions.
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Appendix D

X-Ray Diffractograms for Bulk and Clay Sized Sediments
From Borehole 299-E33-46
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Figure D-1. Bulk Powder XRD Tracings for Sediments from Borehole 299-E33-46.
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Figure D-2. Clay XRD Tracings from Sediments from 299-E33-46.
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