10,118 research outputs found

    Localization and its consequences for quantum walk algorithms and quantum communication

    Get PDF
    The exponential speed-up of quantum walks on certain graphs, relative to classical particles diffusing on the same graph, is a striking observation. It has suggested the possibility of new fast quantum algorithms. We point out here that quantum mechanics can also lead, through the phenomenon of localization, to exponential suppression of motion on these graphs (even in the absence of decoherence). In fact, for physical embodiments of graphs, this will be the generic behaviour. It also has implications for proposals for using spin networks, including spin chains, as quantum communication channels.Comment: 4 pages, 1 eps figure. Updated references and cosmetic changes for v

    Why current-carrying magnetic flux tubes gobble up plasma and become thin as a result

    Get PDF
    It is shown that if a current-carrying magnetic flux tube is bulged at its axial midpoint z=0 and constricted at its axial endpoints z=+h,-h, then plasma will be accelerated from z=+h,-h towards z=0 resulting in a situation similar to two water jets pointed at each other. The ingested plasma convects embedded, frozen-in toroidal magnetic flux from z=+h,-h to z=0. The counter-directed flows collide and stagnate at z=0 and in so doing (i) convert their translational kinetic energy into heat, (ii) increase the plasma density at z~0, and (iii) increase the embedded toroidal flux density at z~0. The increase in toroidal flux density at z~0 increases the toroidal field Bphi and hence increases the magnetic pinch force at z~0 and so causes a reduction of the flux tube radius at z~0. Thus, the flux tube develops an axially uniform cross-section, a decreased volume, an increased density, and an increased temperature. This model is proposed as a likely hypothesis for the long-standing mystery of why solar coronal loops are observed to be axially uniform, hot, and bright.Comment: to appear in Physics of Plasmas 24 pages, 5 figure

    The Critical Aggregation Concentration of ß-Lactoglobulin-Based Fibril Formation

    Get PDF
    The critical aggregation concentration (CAC) for fibril formation of ß-lactoglobulin (ß-lg) at pH 2 was determined at 343, 353, 358, 363, and 383 K using a Thioflavin T assay and was approximately 0.16 wt%. The accuracy of the CAC was increased by measuring the conversion into fibrils at different stirring speeds. The corresponding binding energy per mol, as determined from the CAC, was 13 RT (~40 kJ mol¿1) for the measured temperature range. The fact that the CAC was independent of temperature within the experimental error indicates that the fibril formation of ß-lg at pH 2 and the measured temperature range is an entropy-driven process

    Quasi-Particle Degrees of Freedom versus the Perfect Fluid as Descriptors of the Quark-Gluon Plasma

    Full text link
    The hot nuclear matter created at the Relativistic Heavy Ion Collider (RHIC) has been characterized by near-perfect fluid behavior. We demonstrate that this stands in contradiction to the identification of QCD quasi-particles with the thermodynamic degrees of freedom in the early (fluid) stage of heavy ion collisions. The empirical observation of constituent quark ``nqn_q'' scaling of elliptic flow is juxtaposed with the lack of such scaling behavior in hydrodynamic fluid calculations followed by Cooper-Frye freeze-out to hadrons. A ``quasi-particle transport'' time stage after viscous effects break down the hydrodynamic fluid stage, but prior to hadronization, is proposed to reconcile these apparent contradictions. However, without a detailed understanding of the transitions between these stages, the ``nqn_q'' scaling is not a necessary consequence of this prescription. Also, if the duration of this stage is too short, it may not support well defined quasi-particles. By comparing and contrasting the coalescence of quarks into hadrons with the similar process of producing light nuclei from nucleons, it is shown that the observation of ``nqn_{q}'' scaling in the final state does not necessarily imply that the constituent degrees of freedom were the relevant ones in the initial state.Comment: 9 pages, 7 figures, Updated text and figure

    High Rayleigh number convection with double diffusive fingers

    Full text link
    An electrodeposition cell is used to sustain a destabilizing concentration difference of copper ions in aqueous solution between the top and bottom boundaries of the cell. The resulting convecting motion is analogous to Rayleigh-B\'enard convection at high Prandtl numbers. In addition, a stabilizing temperature gradient is imposed across the cell. Even for thermal buoyancy two orders of magnitude smaller than chemical buoyancy, the presence of the weak stabilizing gradient has a profound effect on the convection pattern. Double diffusive fingers appear in all cases. The size of these fingers and the flow velocities are independent of the height of the cell, but they depend on the ion concentration difference between top and bottom boundaries as well as on the imposed temperature gradient. The scaling of the mass transport is compatible with previous results on double diffusive convection

    Are all noisy quantum states obtained from pure ones?

    Get PDF
    We ask what type of mixed quantum states can arise when a number of separated parties start by sharing a pure quantum state and then this pure state becomes contaminated by noise. We show that not all mixed states arise in this way. This is even the case if the separated parties actively try to degrade their initial pure state by arbitrary local actions and classical communication.Comment: 3 pages, no figure

    Quantum equilibration in finite time

    Full text link
    It has recently been shown that small quantum subsystems generically equilibrate, in the sense that they spend most of the time close to a fixed equilibrium state. This relies on just two assumptions: that the state is spread over many different energies, and that the Hamiltonian has non-degenerate energy gaps. Given the same assumptions, it has also been shown that closed systems equilibrate with respect to realistic measurements. We extend these results in two important ways. First, we prove equilibration over a finite (rather than infinite) time-interval, allowing us to bound the equilibration time. Second, we weaken the non degenerate energy gaps condition, showing that equilibration occurs provided that no energy gap is hugely degenerate.Comment: 7 page

    Bipartite Mixed States of Infinite-Dimensional Systems are Generically Nonseparable

    Get PDF
    Given a bipartite quantum system represented by a tensor product of two Hilbert spaces, we give an elementary argument showing that if either component space is infinite-dimensional, then the set of nonseparable density operators is trace-norm dense in the set of all density operators (and the separable density operators nowhere dense). This result complements recent detailed investigations of separability, which show that when both component Hilbert spaces are finite-dimensional, there is a separable neighborhood (perhaps very small for large dimensions) of the maximally mixed state.Comment: 5 pages, RevTe
    corecore