It is shown that if a current-carrying magnetic flux tube is bulged at its
axial midpoint z=0 and constricted at its axial endpoints z=+h,-h, then plasma
will be accelerated from z=+h,-h towards z=0 resulting in a situation similar
to two water jets pointed at each other. The ingested plasma convects embedded,
frozen-in toroidal magnetic flux from z=+h,-h to z=0. The counter-directed
flows collide and stagnate at z=0 and in so doing (i) convert their
translational kinetic energy into heat, (ii) increase the plasma density at
z~0, and (iii) increase the embedded toroidal flux density at z~0. The increase
in toroidal flux density at z~0 increases the toroidal field Bphi and hence
increases the magnetic pinch force at z~0 and so causes a reduction of the flux
tube radius at z~0. Thus, the flux tube develops an axially uniform
cross-section, a decreased volume, an increased density, and an increased
temperature. This model is proposed as a likely hypothesis for the
long-standing mystery of why solar coronal loops are observed to be axially
uniform, hot, and bright.Comment: to appear in Physics of Plasmas 24 pages, 5 figure