10,405 research outputs found

    Unstable coronal loops : numerical simulations with predicted observational signatures

    Get PDF
    We present numerical studies of the nonlinear, resistive magnetohydrodynamic (MHD) evolution of coronal loops. For these simulations we assume that the loops carry no net current, as might be expected if the loop had evolved due to vortex flows. Furthermore the initial equilibrium is taken to be a cylindrical flux tube with line-tied ends. For a given amount of twist in the magnetic field it is well known that once such a loop exceeds a critical length it becomes unstableto ideal MHD instabilities. The early evolution of these instabilities generates large current concentrations. Firstly we show that these current concentrations are consistent with the formation of a current sheet. Magnetic reconnection can only occur in the vicinity of these current concentrations and we therefore couple the resistivity to the local current density. This has the advantage of avoiding resistive diffusion in regions where it should be negligible. We demonstrate the importance of this procedure by comparison with simulations based on a uniform resistivity. From our numerical experiments we are able to estimate some observational signatures for unstable coronal loops. These signatures include: the timescale of the loop brightening; the temperature increase; the energy released and the predicted observable flow speeds. Finally we discuss to what extent these observational signatures are consistent with the properties of transient brightening loops.Comment: 13 pages, 9 figure

    A test of the CPL parameterization for rapid dark energy equation of state transitions

    Full text link
    We test the robustness and flexibility of the Chevallier-Polarski-Linder (CPL) parameterization of the Dark Energy equation of state w(z)=w0+waz1+zw(z)=w_0+w_a \frac{z}{1+z} in recovering a four-parameter step-like fiducial model. We constrain the parameter space region of the underlying fiducial model where the CPL parameterization offers a reliable reconstruction. It turns out that non negligible biases leak into the results for recent (z<2.5z<2.5) rapid transitions, but that CPL yields a good reconstruction in all other cases. The presented analysis is performed with supernova Ia data as forecasted for a space mission like SNAP/JDEM, combined with future expectations for the CMB shift parameter RR and the BAO parameter AA.Comment: 8 pages, 6 ps figure

    On local invariants of pure three-qubit states

    Get PDF
    We study invariants of three-qubit states under local unitary transformations, i.e. functions on the space of entanglement types, which is known to have dimension 6. We show that there is no set of six independent polynomial invariants of degree less than or equal to 6, and find such a set with maximum degree 8. We describe an intrinsic definition of a canonical state on each orbit, and discuss the (non-polynomial) invariants associated with it.Comment: LateX, 13 pages. Minor typoes corrected. Published versio

    Redox reactions with empirical potentials: Atomistic battery discharge simulations

    Full text link
    Batteries are pivotal components in overcoming some of today's greatest technological challenges. Yet to date there is no self-consistent atomistic description of a complete battery. We take first steps toward modeling of a battery as a whole microscopically. Our focus lies on phenomena occurring at the electrode-electrolyte interface which are not easily studied with other methods. We use the redox split-charge equilibration (redoxSQE) method that assigns a discrete ionization state to each atom. Along with exchanging partial charges across bonds, atoms can swap integer charges. With redoxSQE we study the discharge behavior of a nano-battery, and demonstrate that this reproduces the generic properties of a macroscopic battery qualitatively. Examples are the dependence of the battery's capacity on temperature and discharge rate, as well as performance degradation upon recharge.Comment: 14 pages, 10 figure

    Optimal Entanglement Enhancement for Mixed States

    Get PDF
    We consider the actions of protocols involving local quantum operations and classical communication (LQCC) on a single system consisting of two separated qubits. We give a complete description of the orbits of the space of states under LQCC and characterise the representatives with maximal entanglement of formation. We thus obtain a LQCC entanglement concentration protocol for a single given state (pure or mixed) of two qubits which is optimal in the sense that the protocol produces, with non-zero probability, a state of maximal possible entanglement of formation. This defines a new entanglement measure, the maximum extractable entanglement.Comment: Final version: to appear in Phys. Rev. Let

    Classification of n-qubit states with minimum orbit dimension

    Full text link
    The group of local unitary transformations acts on the space of n-qubit pure states, decomposing it into orbits. In a previous paper we proved that a product of singlet states (together with an unentangled qubit for a system with an odd number of qubits) achieves the smallest possible orbit dimension, equal to 3n/2 for n even and (3n + 1)/2 for n odd, where n is the number of qubits. In this paper we show that any state with minimum orbit dimension must be of this form, and furthermore, such states are classified up to local unitary equivalence by the sets of pairs of qubits entangled in singlets.Comment: 15 pages, latex, revision 2, conclusion added, some proofs shortene

    Cold trapped atoms detected with evanescent waves

    Full text link
    We demonstrate the in situ detection of cold 87 Rb atoms near a dielectric surface using the absorption of a weak, resonant evanescent wave. We have used this technique in time of flight experiments determining the density of atoms falling on the surface. A quantitative understanding of the measured curve was obtained using a detailed calculation of the evanescent intensity distribution. We have also used it to detect atoms trapped near the surface in a standing-wave optical dipole potential. This trap was loaded by inelastic bouncing on a strong, repulsive evanescent potential. We estimate that we trap 1.5 x 10 4 atoms at a density 100 times higher than the falling atoms.Comment: 5 pages, 3 figure

    Surge Detection In An Industrial Axial Flow Compressor.

    Get PDF
    LecturePg. 83-88Compressor surge can be a disruptive and potentially destructive phenomena in turbocompressors. A surge detection scheme utilized in shop and field testing of a 29,600 hp (22 MW) industrial axial compressor is described. Dynamic pressure transducers were installed in the compressor casing to monitor rotor blade-to-blade dynamic pressure changes indicative of rotating stall cells. Rotor shaft radial vibration was also monitored to correlate with the occurrence of surge. The onset of surge could clearly be identified in both the shop performance testing and actual field operation. Low frequency, subsynchronous stall cells were detected prior to an actual flow breakdown and flow reversal. The detection of incipient surge allowed corrective measures to be taken to prevent the compressor from surging. The instrumentation used to detect incipient surge and the results of the compressor testing are described
    • …
    corecore