12,471 research outputs found

    Preoperative predictors of knee range of motion during stair walking after total knee replacement

    Get PDF
    This paper discusses the preoperative predictors of knee range of motion during stair walking after total knee replacement. It was presented at the 17th Annual Meeting of the European Society of Movement Analysis for Adults and Children (ESMAC) in 2008

    Spectra and eigenstates of spin chain Hamiltonians

    Full text link
    We prove that translationally invariant Hamiltonians of a chain of nn qubits with nearest-neighbour interactions have two seemingly contradictory features. Firstly in the limit nn\rightarrow\infty we show that any translationally invariant Hamiltonian of a chain of nn qubits has an eigenbasis such that almost all eigenstates have maximal entanglement between fixed-size sub-blocks of qubits and the rest of the system; in this sense these eigenstates are like those of completely general Hamiltonians (i.e. Hamiltonians with interactions of all orders between arbitrary groups of qubits). Secondly in the limit nn\rightarrow\infty we show that any nearest-neighbour Hamiltonian of a chain of nn qubits has a Gaussian density of states; thus as far as the eigenvalues are concerned the system is like a non-interacting one. The comparison applies to chains of qubits with translationally invariant nearest-neighbour interactions, but we show that it is extendible to much more general systems (both in terms of the local dimension and the geometry of interaction). Numerical evidence is also presented which suggests that the translational invariance condition may be dropped in the case of nearest-neighbour chains.Comment: Updated figures, as accepted in 'Communications in Mathematical Physics' on 5 January 201

    Random matrices and quantum spin chains

    Get PDF
    Random matrix ensembles are introduced that respect the local tensor structure of Hamiltonians describing a chain of nn distinguishable spin-half particles with nearest-neighbour interactions. We prove a central limit theorem for the density of states when nn \rightarrow\infty, giving explicit bounds on the rate of approach to the limit. Universality within a class of probability measures and the extension to more general interaction geometries are established. The level spacing distributions of the Gaussian Orthogonal, Unitary and Symplectic Ensembles are observed numerically for the energy levels in these ensembles.Comment: Updated figures, as accepted in 'Markov Processes and Related Fields' on 3 March 201

    The smallest refrigerators can reach maximal efficiency

    Full text link
    We investigate whether size imposes a fundamental constraint on the efficiency of small thermal machines. We analyse in detail a model of a small self-contained refrigerator consisting of three qubits. We show analytically that this system can reach the Carnot efficiency, thus demonstrating that there exists no complementarity between size and efficiency.Comment: 9 pages, 1 figure. v2: published versio

    Rotating gravity currents: small-scale and large-scale laboratory experiments and a geostrophic model

    Get PDF
    Laboratory experiments simulating gravity-driven coastal surface currents produced by estuarine fresh-water discharges into the ocean are discussed. The currents are generated inside a rotating tank filled with salt water by the continuous release of buoyant fresh water from a small source at the fluid surface. The height, the width and the length of the currents are studied as a function of the background rotation rate, the volumetric discharge rate and the density difference at the source. Two complementary experimental data sets are discussed and compared with each other. One set of experiments was carried out in a tank of diameter 1 m on a small-scale rotating turntable. The second set of experiments was conducted at the large-scale Coriolis Facility (LEGI, Grenoble) which has a tank of diameter 13 m. A simple geostrophic model predicting the current height, width and propagation velocity is developed. The experiments and the model are compared with each other in terms of a set of non-dimensional parameters identified in the theoretical analysis of the problem. These parameters enable the corresponding data of the large-scale and the small-scale experiments to be collapsed onto a single line. Good agreement between the model and the experiments is found

    Measuring thermal conductivity in extreme conditions: sub-Kelvin temperatures and high (27 T) magnetic fields

    Full text link
    We present a one-heater-two-thermometer set-up for measuring thermal conductivity and electric resistivity of a bulk sample at low temperatures down to 0.1 K and in magnetic fields up to 27 Tesla. The design overcomes the difficulties emerging in the context of large water-cooled resistive magnets.Comment: 4 pages including 4 figure

    Role of sialic acid in brachyspira hyodysenteriae adhesion to pig colonic mucins

    Get PDF
    Infection with Brachyspira hyodysenteriae results in mucoid hemorrhagic diarrhea. This pathogen is associated with the colonic mucus layer, mainly composed of mucins. Infection regulates mucin O-glycosylation in the colon and increases mucin secretion as well as B. hyodysenteriae binding sites on mucins. Here, we analyzed potential mucin epitopes for B. hyodysenteriae adhesion in the colon, as well as the effect of colonic mucins on bacterial growth. Associations between B. hyodysenteriae binding to pig colonic mucins and mucin glycan data showed that B. hyodysenteriae binding was associated with the presence of N-glycolylneuraminic acid (NeuGc) on mucins. The role of sialic acid in B. hyodysenteriae adhesion was analyzed after the removal of sialic acid residues on the mucins by enzymatic treatment with sialidase A, which decreased bacterial binding to the mucins. The effect of pig colonic mucins on B. hyodysenteriae growth was determined in carbohydrate-free medium. B. hyodysenteriae growth increased in the presence of mucins from two out of five infected pigs, suggesting utilization of mucins as a carbon source for growth. Additionally, bacterial growth was enhanced by free sialic acid and N-acetylglucosamine. The results highlight a role of sialic acid as an adhesion epitope for B. hyodysenteriae interaction with colonic mucins. Furthermore, the mucin response and glycosylation changes exerted in the colon during B. hyodysenteriae infection result in a potentially favorable environment for pathogen growth in the intestinal mucus layer

    Localization and its consequences for quantum walk algorithms and quantum communication

    Get PDF
    The exponential speed-up of quantum walks on certain graphs, relative to classical particles diffusing on the same graph, is a striking observation. It has suggested the possibility of new fast quantum algorithms. We point out here that quantum mechanics can also lead, through the phenomenon of localization, to exponential suppression of motion on these graphs (even in the absence of decoherence). In fact, for physical embodiments of graphs, this will be the generic behaviour. It also has implications for proposals for using spin networks, including spin chains, as quantum communication channels.Comment: 4 pages, 1 eps figure. Updated references and cosmetic changes for v

    Why current-carrying magnetic flux tubes gobble up plasma and become thin as a result

    Get PDF
    It is shown that if a current-carrying magnetic flux tube is bulged at its axial midpoint z=0 and constricted at its axial endpoints z=+h,-h, then plasma will be accelerated from z=+h,-h towards z=0 resulting in a situation similar to two water jets pointed at each other. The ingested plasma convects embedded, frozen-in toroidal magnetic flux from z=+h,-h to z=0. The counter-directed flows collide and stagnate at z=0 and in so doing (i) convert their translational kinetic energy into heat, (ii) increase the plasma density at z~0, and (iii) increase the embedded toroidal flux density at z~0. The increase in toroidal flux density at z~0 increases the toroidal field Bphi and hence increases the magnetic pinch force at z~0 and so causes a reduction of the flux tube radius at z~0. Thus, the flux tube develops an axially uniform cross-section, a decreased volume, an increased density, and an increased temperature. This model is proposed as a likely hypothesis for the long-standing mystery of why solar coronal loops are observed to be axially uniform, hot, and bright.Comment: to appear in Physics of Plasmas 24 pages, 5 figure
    corecore