869 research outputs found

    Coronal Plane: Cristin Millett

    Full text link
    Coronal Plane is the culmination of Millett’s research on the anatomical theater at the University of Padua built in 1594, the oldest surviving anatomy theater in the world. The installation allows viewers to walk into and through a space that evokes physical, emotional, and psychological reactions similar to those experienced in the historic anatomy theater in Padua by audiences of the past. Illustrations depicted on red “windows” in Millett’s work are appropriated from De Formato Foetu, a text written by Girolamo Fabrizi d’Acquapendente (Hieronymus Fabricius), the Chair of Anatomy at the University of Padua. It was under his leadership that the anatomy theater of 1594 was built. Millett’s allusions to Catholic confessionals and kneeling benches in the installation invite the viewer to question the contradictory stance between surgeries performed for medical education and dissections completed in order to disperse sacred remains for widespread worship. Particular references to sexuality and sexual differences are also central to Millett’s investigation of historical medical practices and philosophies. The University of Padua was one of the first institutions that dissected both male and female cadavers.https://cupola.gettysburg.edu/artcatalogs/1026/thumbnail.jp

    Linking soil moisture content and carbon dioxide fluxes: From batch experiments to process-based modelling

    Get PDF
    The emissions of carbon dioxide (CO2) from soil to the atmosphere represent a major flux within the global carbon cycle. Soil CO2 fluxes depend on environmental factors including soil moisture and oxygen, and on intrinsic physical and chemical properties of the soil itself. The responses of soil CO2 fluxes to changes in environmental conditions remain unclear but are critical for predictive modelling of carbon fluxes with climate change. The numerous processes involved in soil CO2 production and some of their driving factors are reviewed and discussed in Chapter 1 of this thesis. In Chapter 2, I examined the effects of both soil moisture and oxygen on soil CO2 fluxes through experimentation and modelling. Soil moisture and oxygen are closely linked: given a constant pore volume, gas-filled pore space decreases as the proportion of water-filled pore space increases, both of which influence soil aerobic and anaerobic microbial processes. To decouple the effects of soil moisture and oxygen, I conducted a factorial batch experiment by incubating an agricultural soil collected from the field and adjusted to different moisture contents (30%-100% water-filled pore space; WFPS) and under oxic versus anoxic headspaces. Gas fluxes (CO2 and methane) and pore water chemistry parameters were measured at the end of the 21-day incubation. The results demonstrated that, as expected, CO2 fluxes became moisture-limited at low soil moisture and oxygen-limited at high soil moisture; hence, fluxes were maximal at moderate moisture content (65% WFPS). Non-zero and, at times, substantial fluxes at 100% saturation and under anoxic incubation demonstrated that anaerobic sources contributed to overall CO2 fluxes in addition to aerobic respiration. CO2 fluxes under anoxic headspaces were affected by soil moisture independently of oxygen availability, with maximum fluxes occurring at 100% saturation. At high moisture contents (80% and 100% WFPS), CO2 fluxes in anoxic incubations were 75% to >100% of those in oxic incubations. Methane fluxes, production of low molecular weight organic acids and depletion of other electron acceptors indicated that fermentation and methanogenesis were likely the main pathways for CO2 production occurring at the end of the anoxic incubation. These results demonstrated that anaerobic production of CO2 (via fermentation, methanogenesis and/or anaerobic respiration) can be an important source that has been ignored in existing models which typically only consider aerobic respiration. A simple formulation for incorporating anaerobic sources in existing models was developed. These results highlight that CO2 is produced by a collection of soil processes and therefore model development needs to move beyond the simplified “soil respiration” representation and incorporate a process-based understanding of greenhouse gas-emitting processes in soil. In Chapter 3, I reviewed the current state of knowledge regarding the effect of soil texture on soil CO2 fluxes. While many past studies have investigated the protective effect of clay on soil organic matter, I focussed this discussion on the potential interaction between soil texture and soil moisture in controlling soil CO2 fluxes. The review identified that, while some studies have developed a conceptual framework for making predictions about this possible interaction, very few studies have tested these predictions experimentally. As a first step in investigating soil texture and soil moisture in a factorial experiment, I conducted another batch experiment where I prepared three artificial soils of varying textures (ranging from approximately 7%-20% clay content) and incubated soil samples at different moisture contents (ranging from approximately 7%-100% WFPS). The measured CO2 fluxes and their relationship with soil moisture were affected by soil texture, although the way in which soil moisture was expressed (gravimetric vs. % WFPS) affected the functional dependence of the CO2 fluxes on soil texture. More direct experimental data and improvements to the experimental methods will be required to advance our process-based understanding of how soil texture and soil moisture affect CO2 fluxes. This process-based understanding is prerequisite to the development and validation of models that accurately represent these controlling factors

    Exploring the Feasibility of Text Messaging Intervention in Intimate Partner Violence

    Get PDF
    Introduction: Intimate Partner Violence (IPV) is defined as controlling, abusive, and aggressive behavior in a romantic relationship. Women between the ages 16 and 24 experience the highest rate of IPV. IPV costs US society at least 13.6billionannuallyandisexpectedtoriseto13.6 billion annually and is expected to rise to 15.6 billion by 2021. The purpose of this study is to explore the feasibility of Text Messaging Intervention\ud (TMI) in recognizing, responding and preventing IPV among college students. The research questions are: Will TMI 1) improve participant knowledge of warning signs of IPV? (Knowledge) and 2) improve participant confidence to intervene in IPV? (Confidence). Methods: A mixed methods design in data collection and data analysis was used. One-way ANOVA and Chi-square test were used to analyze quantitative data from the pre and post TMI survey. Results of the qualitative data analysis are included verbatim. Results: Results showed that knowledge level pre to post test increased from 2.00 ± 1.00 to 2.7 ± 0.48 (p < 0.001) and confidence level pre to post test increased from 2.89 ± 0.60 to 3.30 ± 0.68 (p < 0.001). Conclusions: Further research is needed in evaluating\ud the feasibility and effectiveness of IPV prevention programs that uses mobile devices to create the best optimal health outcomes

    Improving Photoelectron Counting and Particle Identification in Scintillation Detectors with Bayesian Techniques

    Full text link
    Many current and future dark matter and neutrino detectors are designed to measure scintillation light with a large array of photomultiplier tubes (PMTs). The energy resolution and particle identification capabilities of these detectors depend in part on the ability to accurately identify individual photoelectrons in PMT waveforms despite large variability in pulse amplitudes and pulse pileup. We describe a Bayesian technique that can identify the times of individual photoelectrons in a sampled PMT waveform without deconvolution, even when pileup is present. To demonstrate the technique, we apply it to the general problem of particle identification in single-phase liquid argon dark matter detectors. Using the output of the Bayesian photoelectron counting algorithm described in this paper, we construct several test statistics for rejection of backgrounds for dark matter searches in argon. Compared to simpler methods based on either observed charge or peak finding, the photoelectron counting technique improves both energy resolution and particle identification of low energy events in calibration data from the DEAP-1 detector and simulation of the larger MiniCLEAN dark matter detector.Comment: 16 pages, 16 figure

    An A2A adenosine receptor agonist, ATL313, reduces inflammation and improves survival in murine sepsis models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The pathophysiology of sepsis is due in part to early systemic inflammation. Here we describe molecular and cellular responses, as well as survival, in A<sub>2A </sub>adenosine receptor (AR) agonist treated and untreated animals during experimental sepsis.</p> <p>Methods</p> <p>Sepsis was induced in mice by intraperitoneal inoculation of live bacteria (<it>Escherichia coli </it>or <it>Staphylococcus aureus</it>) or lipopolysaccharide (LPS). Mice inoculated with live bacteria were treated with an A<sub>2A </sub>AR agonist (ATL313) or phosphate buffered saline (PBS), with or without the addition of a dose of ceftriaxone. LPS inoculated mice were treated with ATL313 or PBS. Serum cytokines and chemokines were measured sequentially at 1, 2, 4, 8, and 24 hours after LPS was administered. In survival studies, mice were followed until death or for 7 days.</p> <p>Results</p> <p>There was a significant survival benefit in mice infected with live <it>E. coli </it>(100% vs. 20%, <it>p </it>= 0.013) or <it>S. aureus </it>(60% vs. 20%, <it>p </it>= 0.02) when treated with ATL313 in conjunction with an antibiotic versus antibiotic alone. ATL313 also improved survival from endotoxic shock when compared to PBS treatment (90% vs. 40%, <it>p </it>= 0.005). The serum concentrations of TNF-α, MIP-1α, MCP-1, IFN-γ, and IL-17 were decreased by ATL313 after LPS injection (<it>p </it>< 0.05). Additionally, ATL313 increased the concentration of IL-10 under the same conditions (<it>p </it>< 0.05). Circulating white blood cell concentrations were higher in ATL313 treated animals (<it>p </it>< 0.01).</p> <p>Conclusion</p> <p>Further studies are warranted to determine the clinical utility of ATL313 as a novel treatment for sepsis.</p

    Functional MRI of Auditory Responses in the Zebra Finch Forebrain Reveals a Hierarchical Organisation Based on Signal Strength but Not Selectivity

    Get PDF
    BACKGROUND: Male songbirds learn their songs from an adult tutor when they are young. A network of brain nuclei known as the 'song system' is the likely neural substrate for sensorimotor learning and production of song, but the neural networks involved in processing the auditory feedback signals necessary for song learning and maintenance remain unknown. Determining which regions show preferential responsiveness to the bird's own song (BOS) is of great importance because neurons sensitive to self-generated vocalisations could mediate this auditory feedback process. Neurons in the song nuclei and in a secondary auditory area, the caudal medial mesopallium (CMM), show selective responses to the BOS. The aim of the present study is to investigate the emergence of BOS selectivity within the network of primary auditory sub-regions in the avian pallium. METHODS AND FINDINGS: Using blood oxygen level-dependent (BOLD) fMRI, we investigated neural responsiveness to natural and manipulated self-generated vocalisations and compared the selectivity for BOS and conspecific song in different sub-regions of the thalamo-recipient area Field L. Zebra finch males were exposed to conspecific song, BOS and to synthetic variations on BOS that differed in spectro-temporal and/or modulation phase structure. We found significant differences in the strength of BOLD responses between regions L2a, L2b and CMM, but no inter-stimuli differences within regions. In particular, we have shown that the overall signal strength to song and synthetic variations thereof was different within two sub-regions of Field L2: zone L2a was significantly more activated compared to the adjacent sub-region L2b. CONCLUSIONS: Based on our results we suggest that unlike nuclei in the song system, sub-regions in the primary auditory pallium do not show selectivity for the BOS, but appear to show different levels of activity with exposure to any sound according to their place in the auditory processing stream

    Dopamine Modulates Persistent Synaptic Activity and Enhances the Signal-to-Noise Ratio in the Prefrontal Cortex

    Get PDF
    The importance of dopamine (DA) for prefrontal cortical (PFC) cognitive functions is widely recognized, but its mechanisms of action remain controversial. DA is thought to increase signal gain in active networks according to an inverted U dose-response curve, and these effects may depend on both tonic and phasic release of DA from midbrain ventral tegmental area (VTA) neurons.We used patch-clamp recordings in organotypic co-cultures of the PFC, hippocampus and VTA to study DA modulation of spontaneous network activity in the form of Up-states and signals in the form of synchronous EPSP trains. These cultures possessed a tonic DA level and stimulation of the VTA evoked DA transients within the PFC. The addition of high (≥1 µM) concentrations of exogenous DA to the cultures reduced Up-states and diminished excitatory synaptic inputs (EPSPs) evoked during the Down-state. Increasing endogenous DA via bath application of cocaine also reduced Up-states. Lower concentrations of exogenous DA (0.1 µM) had no effect on the up-state itself, but they selectively increased the efficiency of a train of EPSPs to evoke spikes during the Up-state. When the background DA was eliminated by depleting DA with reserpine and alpha-methyl-p-tyrosine, or by preparing corticolimbic co-cultures without the VTA slice, Up-states could be enhanced by low concentrations (0.1–1 µM) of DA that had no effect in the VTA containing cultures. Finally, in spite of the concentration-dependent effects on Up-states, exogenous DA at all but the lowest concentrations increased intracellular current-pulse evoked firing in all cultures underlining the complexity of DA's effects in an active network.Taken together, these data show concentration-dependent effects of DA on global PFC network activity and they demonstrate a mechanism through which optimal levels of DA can modulate signal gain to support cognitive functioning
    corecore