12 research outputs found

    Anisotropic Small-Polaron Hopping In W:Bivo4 Single Crystals

    Get PDF
    DC electrical conductivity, Seebeck and Hall coefficients are measured between 300 and 450 K on single crystals of monoclinic bismuth vanadate that are doped n-type with 0.3% tungsten donors (W:BiVO4). Strongly activated small-polaron hopping is implied by the activation energies of the Arrhenius conductivities (about 300 meV) greatly exceeding the energies characterizing the falls of the Seebeck coefficients' magnitudes with increasing temperature (about 50 meV). Small-polaron hopping is further evidenced by the measured Hall mobility in the ab-plane (10(-1) cm(2) V-1 s(-1) at 300 K) being larger and much less strongly activated than the deduced drift mobility (about 5 x 10(-5) cm(2) V-1 s(-1) at 300 K). The conductivity and n-type Seebeck coefficient is found to be anisotropic with the conductivity larger and the Seebeck coefficient's magnitude smaller and less temperature dependent for motion within the ab-plane than that in the c-direction. These anisotropies are addressed by considering highly anisotropic next-nearest-neighbor (approximate to 5 angstrom) transfers in addition to the somewhat shorter (approximate to 4 angstrom), nearly isotropic nearest-neighbor transfers. (C) 2015 AIP Publishing LLC.U.S. Department of Energy (DOE), DE-FG02-09ER16119Welch Foundation Grant F-1436Hemphill-Gilmore Endowed FellowshipNSF MIRT DMR 1122603Chemical EngineeringTexas Materials InstituteChemistr

    Parallel conduction in semiconductors

    No full text

    Hall-effect mobility for a selection of natural and synthetic 2D semiconductor crystals

    Get PDF
    We present a DC-AC Hall-effect analysis on transition-metal-dichalcogenides comprising natural crystals of molybdenum disulfide and tungsten diselenide; and synthetic crystals of hafnium diselenide, molybdenum ditelluride, molybdenum diselenide and niobium-doped molybdenum disulfide. We observe a wide range of Hall mobility and carrier concentration values with either a net electron or hole carrier type. The synthetic niobium-doped molybdenum disulfide crystal exhibits a net hole carrier type and a carrier concentration approximately two orders of magnitude higher than a non-intentionally doped natural molybdenum disulfide crystal, with an equivalent reduction in Hall mobility. This synthetic niobium-doped molybdenum disulfide crystal also shows a significantly reduced resistivity when compared to the other crystals. Secondary ion mass spectrometry shows higher counts of niobium in the intentionally-doped synthetic niobium-molybdenum disulfide crystal, in addition to various other high contamination counts in both the natural and synthetic molybdenum disulfide crystals, correlating well with the significant range of high resistivity observed. Compared to silicon, the resistivity in these contaminated TMD materials reduces less rapidly with increasing equivalent carrier concentration levels, and the resistivity is higher in magnitude by a factor of approximately 4-10 when compared to silicon, which in turn reduces the achievable Hall mobility by at least a similar factor. It is therefore suggested that more controlled growth methods of TMD materials which lead to significantly reduced contamination elements and levels, with improved stoichiometry, could potentially provide a significant increase in Hall mobility assuming no change in carrier properties

    Overcoming Film Quality Issues for Conjugated Polymers Doped with F<sub>4</sub>TCNQ by Solution Sequential Processing: Hall Effect, Structural, and Optical Measurements

    No full text
    We demonstrate that solution-sequential processing (SqP) can yield heavily doped pristine-quality films when used to infiltrate the molecular dopant 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F<sub>4</sub>TCNQ) into pure poly­(3-hexylthiophene) (P3HT) polymer layers. Profilometry measurements show that the SqP method produces doped films with essentially the same surface roughness as pristine films, and 2-D grazing-incidence wide-angle X-ray scattering (GIWAXS) confirms that SqP preserves both the size and orientation of the pristine polymer’s crystallites. Unlike traditional blend-cast F<sub>4</sub>TCNQ/P3HT doped films, our sequentially processed layers have tunable and reproducible conductivities reaching as high as 5.5 S/cm even when measured over macroscopic (>1 cm) distances. The high conductivity and superb film quality allow for meaningful Hall effect measurements, which reveal p-type conduction and carrier concentrations tunable from 10<sup>16</sup> to 10<sup>20</sup> cm<sup>–3</sup> and hole mobilities ranging from ∼0.003 to 0.02 cm<sup>2</sup> V<sup>–1</sup> s<sup>–1</sup> at room temperature over the doping levels examined

    Combined Charge Carrier Transport and Photoelectrochemical Characterization of BiVO<sub>4</sub> Single Crystals: Intrinsic Behavior of a Complex Metal Oxide

    No full text
    Bismuth vanadate (BiVO<sub>4</sub>) is a promising photoelectrode material for the oxidation of water, but fundamental studies of this material are lacking. To address this, we report electrical and photoelectrochemical (PEC) properties of BiVO<sub>4</sub> single crystals (undoped, 0.6% Mo, and 0.3% W:BiVO<sub>4</sub>) grown using the floating zone technique. We demonstrate that a small polaron hopping conduction mechanism dominates from 250 to 400 K, undergoing a transition to a variable-range hopping mechanism at lower temperatures. An anisotropy ratio of ∼3 was observed along the <i>c</i> axis, attributed to the layered structure of BiVO<sub>4</sub>. Measurements of the ac field Hall effect yielded an electron mobility of ∼0.2 cm<sup>2</sup> V<sup>–1</sup> s<sup>–1</sup> for Mo and W:BiVO<sub>4</sub> at 300 K. By application of the Gärtner model, a hole diffusion length of ∼100 nm was estimated. As a result of low carrier mobility, attempts to measure the dc Hall effect were unsuccessful. Analyses of the Raman spectra showed that Mo and W substituted for V and acted as donor impurities. Mott–Schottky analysis of electrodes with the (001) face exposed yielded a flat band potential of 0.03–0.08 V versus the reversible H<sub>2</sub> electrode, while incident photon conversion efficiency tests showed that the dark coloration of the doped single crystals did not result in additional photocurrent. Comparison of these intrinsic properties to those of other metal oxides for PEC applications gives valuable insight into this material as a photoanode
    corecore