1,148 research outputs found

    GeoBoids: A Mobile AR Application for Exergaming

    Get PDF
    “© © 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.”We have designed a mobile Augmented Reality (AR) game which incorporates video see-through and spatialized audio AR techniques and encourages player movement in the real world. In the game, called GeoBoids, the player is surrounded by flocks of virtual creatures that are visible and audible through mobile AR application. The goal is for the player to run to the location of a GeoBoid swarm in the real world, capture all the creatures there, then run to the next swarm and repeat, before time runs out, encouraging the player to exercise during game play. The most novel elements of the game are the use of audio input and output for interacting with the creatures. The interface design of the game includes AR visualization, spatialized audio, touch gestures and whistle interaction. Feedback from users in a preliminary user study was mostly positive on overall game play and the design of the UI, while the results also revealed improvements were needed for whistle interaction and the visual design of the GeoBoids

    Kidney tissue proteome profiles in short versus long duration of delayed graft function – a pilot study in donation after circulatory death donors

    Get PDF
    Introduction: Delayed graft function (DGF) is often defined as the need for dialysis treatment in the first week after a kidney transplantation. This definition, though readily applicable, is generic and unable to distinguish between “types” of DGF or time needed to recover function that may also significantly affect longer-term outcomes. We aimed to profile biological pathways in donation after circulatory death (DCD) kidney donors that correlate with DGF and different DGF durations. Methods: A total of N = 30 DCD kidney biopsies were selected from the UK Quality in Organ Donation (QUOD) biobank and stratified according to DGF duration (immediate function, IF n = 10; “short-DGF” (1–6 days), SDGF n = 10; “long-DGF” (7–22 days), LDGF n = 10). Samples were matched for donor and recipient demographics and analyzed by label-free quantitative (LFQ) proteomics, yielding identification of N = 3378 proteins. Results: Ingenuity pathway analysis (IPA) on differentially abundant proteins showed that SDGF kidneys presented upregulation of stress response pathways, whereas LDGF presented impaired response to stress, compared to IF. LDGF showed extensive metabolic deficits compared to IF and SDGF. Conclusion: DCD kidneys requiring dialysis only in the first week posttransplant present acute cellular injury at donation, alongside repair pathways upregulation. In contrast, DCD kidneys requiring prolonged dialysis beyond 7 days present minimal metabolic and antioxidant responses, suggesting that current DGF definitions might not be adequate in distinguishing different patterns of injury in donor kidneys contributing to DGF

    Understanding the Results of Multiple Linear Regression: Beyond Standardized Regression Coefficients

    Get PDF
    Multiple linear regression (MLR) remains a mainstay analysis in organizational research, yet intercorrelations between predictors (multicollinearity) undermine the interpretation of MLR weights in terms of predictor contributions to the criterion. Alternative indices include validity coefficients, structure coefficients, product measures, relative weights, all-possible-subsets regression, dominance weights, and commonality coefficients. This article reviews these indices, and uniquely, it offers freely available software that (a) computes and compares all of these indices with one another, (b) computes associated bootstrapped confidence intervals, and (c) does so for any number of predictors so long as the correlation matrix is positive definite. Other available software is limited in all of these respects. We invite researchers to use this software to increase their insights when applying MLR to a data set. Avenues for future research and application are discussed

    Modelling verb selection within argument structure constructions

    Get PDF
    This article looks into the nature of cognitive associations between verbs and argument structure constructions (ASCs). Existing research has shown that distributional and semantic factors affect speakers' choice of verbs in ASCs. A formal account of this theory has been proposed by Ellis, O'Donnell, and Römer, who show that the frequency of production of verbs within an ASC can be predicted from joint verb–construction frequency, contingency of verb–construction mapping, and prototypicality of verb meaning. We simulate the verb production task using a computational model of ASC learning, and compare its performance to the available human data. To account for individual variation between speakers and for order of verb preference, we carry out two additional analyses. We then compare a number of prediction models with different variables, and propose a refined account of verb selection within ASCs: overall verb frequency is an additional factor affecting verb selection, while the effects of joint frequency and contingency may be combined rather than independent

    Charge Delocalization in Self-Assembled Mixed-Valence Aromatic Cation Radicals

    Get PDF
    The spontaneous assembly of aromatic cation radicals (D+‱) with their neutral counterpart (D) affords dimer cation radicals (D2+‱). The intermolecular dimeric cation radicals are readily characterized by the appearance of an intervalence charge-resonance transition in the NIR region of their electronic spectra and by ESR spectroscopy. The X-ray crystal structure analysis and DFT calculations of a representative dimer cation radical (i.e., the octamethylbiphenylene dimer cation radical) have established that a hole (or single positive charge) is completely delocalized over both aromatic moieties. The energetics and the geometrical considerations for the formation of dimer cation radicals is deliberated with the aid of a series of cyclophane-like bichromophoric donors with drastically varied interplanar angles between the cofacially arranged aryl moieties. X-ray crystallography of a number of mixed-valence cation radicals derived from monochromophoric benzenoid donors established that they generally assemble in 1D stacks in the solid state. However, the use of polychromophoric intervalence cation radicals, where a single charge is effectively delocalized among all of the chromophores, can lead to higher-order assemblies with potential applications in long-range charge transport. As a proof of concept, we show that a single charge in the cation radical of a triptycene derivative is evenly distributed on all three benzenoid rings and this triptycene cation radical forms a 2D electronically coupled assembly, as established by X-ray crystallography

    Clinical Laboratory Testing Practices in Diffuse Gliomas Prior to Publication of 2021 World Health Organization Classification of Central Nervous System Tumors

    Get PDF
    CONTEXT.—: Integration of molecular data into glioma classification supports diagnostic, prognostic, and therapeutic decision-making; however, testing practices for these informative biomarkers in clinical laboratories remain unclear. OBJECTIVE.—: To examine the prevalence of molecular testing for clinically relevant biomarkers in adult and pediatric gliomas through review of a College of American Pathologists proficiency testing survey prior to the release of the 2021 World Health Organization Classification of Central Nervous System Tumors. DESIGN.—: College of American Pathologists proficiency testing 2020 survey results from 96 laboratories performing molecular testing for diffuse gliomas were used to determine the use of testing for molecular biomarkers in gliomas. RESULTS.—: The data provide perspective into the testing practices for diffuse gliomas from a broad group of clinical laboratories in 2020. More than 98% of participating laboratories perform testing for glioma biomarkers recognized as diagnostic for specific subtypes, including IDH. More than 60% of laboratories also use molecular markers to differentiate between astrocytic and oligodendroglial lineage tumors, with some laboratories providing more comprehensive analyses, including prognostic biomarkers, such as CDKN2A/B homozygous deletions. Almost all laboratories test for MGMT promoter methylation to identify patients with an increased likelihood of responding to temozolomide. CONCLUSIONS.—: These findings highlight the state of molecular testing in 2020 for the diagnosis and classification of diffuse gliomas at large academic medical centers. The findings show that comprehensive molecular testing is not universal across clinical laboratories and highlight the gaps between laboratory practices in 2020 and the recommendations in the 2021 World Health Organization Classification of Central Nervous System Tumors

    Evaluating the utility of B/Ca ratios in planktic foraminifera as a proxy for the carbonate system: A case study of Globigerinoides ruber

    No full text
    B/Ca ratios in foraminifera have attracted considerable scientific attention as a proxy for past ocean carbonate system. However, the carbonate system controls on B/Ca ratios are not straightforward, with ?[ inline image] ([ inline image]in situ – [ inline image]at saturation) correlating best with B/Ca ratios in benthic foraminifera, rather than pH, inline image, or inline image (as a simple model of boron speciation in seawater and incorporation into CaCO3 would predict). Furthermore, culture experiments have shown that in planktic foraminifera properties such as salinity and [B]sw can have profound effects on B/Ca ratios beyond those predicted by simple partition coefficients. Here, we investigate the controls on B/Ca ratios in G. ruber via a combination of culture experiments and core-top measurements, and add to a growing body of evidence that suggests B/Ca ratios in symbiont-bearing foraminiferal carbonate are not a straightforward proxy for past seawater carbonate system conditions. We find that while B/Ca ratios in culture experiments covary with pH, in open ocean sediments this relationship is not seen. In fact, our B/Ca data correlate best with [ inline image] (a previously undocumented association) and in most regions, salinity. These findings might suggest a precipitation rate or crystallographic control on boron incorporation into foraminiferal calcite. Regardless, our results underscore the need for caution when attempting to interpret B/Ca records in terms of the ocean carbonate system, at the very least in the case of mixed-layer planktic foraminifera
    • 

    corecore