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REGULAR ARTICLE

Modelling verb selection within argument structure constructions
Yevgen Matusevycha,b , Afra Alishahib and Ad Backusa

aDepartment of Culture Studies, Tilburg University, Tilburg, The Netherlands; bTilburg Center for Cognition and Communication (TiCC), Tilburg
University, Tilburg, The Netherlands

ABSTRACT
This article looks into the nature of cognitive associations between verbs and argument structure
constructions (ASCs). Existing research has shown that distributional and semantic factors affect
speakers’ choice of verbs in ASCs. A formal account of this theory has been proposed by Ellis,
N. C., O’Donnell, M. B., & Römer, U. [(2014a). The processing of verb–argument constructions is
sensitive to form, function, frequency, contingency and prototypicality. Cognitive Linguistics, 25,
55–98. doi:10.1515/cog-2013-0031], who show that the frequency of production of verbs within
an ASC can be predicted from joint verb–construction frequency, contingency of verb–
construction mapping, and prototypicality of verb meaning. We simulate the verb production
task using a computational model of ASC learning, and compare its performance to the available
human data. To account for individual variation between speakers and for order of verb
preference, we carry out two additional analyses. We then compare a number of prediction
models with different variables, and propose a refined account of verb selection within ASCs:
overall verb frequency is an additional factor affecting verb selection, while the effects of joint
frequency and contingency may be combined rather than independent.
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Introduction

Speakers’ language use is conditional on the linguistic
means they possess. In a way, an individual’s language
useprovidesuswitha “windowtothemind” (Gilquin,2010):
linguistic representations are studied through language
use (see a review by Clahsen, 2007). At the same time,
one of the tenets of cognitive linguistics is that linguistic
knowledge is directly grounded in previous usage events
(e.g. Kemmer & Barlow, 2000). Such events include both
language production and comprehension, thus an individ-
ual’s languageuse depends to a certain extent on theprop-
erties of the input (s)he has been exposed to. Indeed, it is
known that input-related (e.g. distributional) properties of
a linguistic unit affect how this unit is used or processed
(e.g. Ellis, 2002; Gor & Long, 2009; Hoff & Naigles, 2002).
But to determine the importance of various input-related
factors, we need formal models predicting language use
from multiple factors at once.

In the present article, we study the processing of argu-
ment structure constructions through a verb production
task. In the traditional view of argument structure, the
termdescribes how the arguments of a predicate (typically
a verb) are realised: the verb eat involves two participants,
hence two arguments; importantly, the verb is believed to

predict its structure (Haegeman, 1994). In constructionist
accounts, in particular Goldberg’s construction grammar
(Goldberg, 1995, 2006; Goldberg, Casenhiser, & Sethura-
man, 2004), argument structures obtain properties inde-
pendent of particular verbs through the emergence of
abstract argument structure constructions, a particular
type of linguistic constructions (or form–meaning pairings)
that “provide the means of clausal expression” (Goldberg,
1995, p. 3): for example, the verb eat often participates in
a transitive construction, which has the form SUBJ VERB OBJ

and the meaning X acts on Y. Such constructions slowly
emerge in a learner’s mind as (s)he categorises individual
verb instances. Although this is a simplistic description,
argument structures can be seen as verb-centred mental
categories (Goldberg et al., 2004; Goldberg, Casenhiser, &
Sethuraman, 2005), where a variety of verbs may occupy
the central slot in each construction.

The studies mentioned above investigate, among
other things, the role of individual verbs and their prop-
erties in formation of argument structure constructions,
considering their abstract nature. Within a given con-
struction, speakers prefer some verbs over others. In par-
ticular, some verbs within a construction are produced
more frequently than others, they come to mind first,
and they are learned earlier (e.g. Ellis & Ferreira-Junior,
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2009; Goldberg et al., 2004; Naigles & Hoff-Ginsberg,
1998; Ninio, 1999b; Theakston, Lieven, Pine, & Rowland,
2004): e.g. the SUBJECT VERB LOCATION construction attracts
such verbs as go, come, and get, while sleep and telephone
are rather rare (data from Ellis & Ferreira-Junior, 2009).
Two groups of factors have been considered to predict
verb preference: distributional and semantic factors, yet
there is no conclusive evidence on the exact contribution
of each factor. At the same time, it is important to reveal
their exact contributions, in order to better understand
the underlying nature of links between verbs and con-
structions in speakers’ minds. Understanding which
input properties enable individual verbs to group into
constructions would contribute to our knowledge
about the mental grammar, or “constructicon ”.

Our goal in this article is to evaluate the role of specific
distributional and semantic factors. As a methodological
tool, we use a computational model of construction
learning. Computational models enable us to overcome
some of the methodological limitations imposed by
studying human subjects and, as a result, make informed
predictions about the role of some of the proposed
factors. Ultimately, our study endeavours to propose a
refined prediction model explaining verb selection in
argument structure constructions. This will help us to
understand which factors are responsible for the emer-
gence of links between verbs and constructions in the
minds of language users.

The article is organised as follows. In the next section,
we review some existing studies on the issue (Predicting
verb selection), motivate our focus on particular studies
(Ellis, O’Donnell, & Römer, 2014a,b), and expose two
methodological issues that we plan to address. We also
introduce distributional and semantic factors considered
in the article, and explain why these factors may be
important (Factors affecting verb selection). This is fol-
lowed in the sectionMaterial and methods by the descrip-
tion of the set-up of our study: computational model,
input data, test stimuli, and the exact predictor variables
representing the distributional and semantic factors
under consideration. The Simulations and results section
consists of three studies: the first one is intended to simu-
late the original experiments: we demonstrate a reason-
able performance of our model in the target task, and fit
a regression explaining this performance as a function of
the predictor variables. The second study addresses two
methodological issues: we show how the regression
coefficients change when each of the issues is resolved.
In the final study (Refining the prediction model), we con-
sider alternative combinations of predictor variables that
may better explain the model’s performance in the target
task. General discussion summarises the article, and is fol-
lowed by a short Conclusion.

Theoretical overview

Predicting verb selection

Ellis et al. (2014a,b), henceforth EOR, provided native and
non-native English speakers1 with a set of stimuli, which
schematically represented argument structure construc-
tions with a verb missing: it _____ about the… , s/he
_____ across the… , it _____ as the… , etc. Each stimulus
was presented both with an animate (he or she) and with
an inanimate (it) pronoun. Participants had to spend a
minute to produce verbs fitting the slot. Note that EOR’s
stimuli have a very weak semantic component: they are,
in fact, form-based patterns, and participants are free in
their interpretations of the arguments’ thematic roles.
Römer, O’Donnell, and Ellis (2015) motivate such an
approach by the fact that they analyse semantic associ-
ations between verbs and constructions, and therefore it
is “important to initially define the forms that will be ana-
lysed in a semantics-free, bottom-up manner” (p. 45).
Although this is a controversial point (and we return to
it in the discussion), in this study we follow their approach.

Importantly, this task is used to investigate the
acquired associations between verbs and constructions,
and it is not suitable for studying language production
as such. In production speakers start from the intended
meaning, and then encode this meaning using some of
the suitable forms (words, grammatical patterns, etc.).
In contrast, EOR’s participants are cued with a pattern
with little semantic information and have to select a
verb (that is, a form and a meaning at the same time)
that fits the pattern. In this capacity, the task is similar
to other psycholinguistic tasks often used for studying
human memory, implicit knowledge of words, and
mental grammar: the fill-in-the-blank (cloze) task, the
free word association task, and the cued recall task (see
Shaoul, Baayen, & Westbury, 2014, for a review).

Following the task, the cumulative frequency of pro-
duction of each verb in each construction was calculated.
Statistical analyses revealed that the cumulative pro-
duction frequency could be predicted from three input
variables – verb frequency in the construction, contin-
gency of verb–construction mapping, and prototypical-
ity of verb meaning – with an independent
contribution of each variable. Here, we only briefly
define the variables, more information on each of them
is given below (see Factors affecting verb selection).

. Verb frequency in the construction: how frequently a
verb appears within a specific construction in the lin-
guistic input.

. Contingency of verb–construction mapping: to what
extent the use of a specific construction is indicative
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of a particular verb, compared to other constructions/
verbs.

. Prototypicality of verb meaning: how representative
the verb meaning is for the general semantics of a
construction.

Some of these findings are in line with some existing
studies in language acquisition, which look at verb pro-
duction by children. In particular, the verb frequency
effect has been also found by Naigles and Hoff-Ginsberg
(1998), Ninio (1999a), and Theakston et al. (2004).
However, Ninio (1999a) suggests that the effects of fre-
quency and prototypicality are not independent, and
Theakston et al. (2004) find no effect of prototypicality
after the frequency is accounted for.

Additionally, there is a number of studies carried out
by Ambridge and colleagues, who investigate whether
distributional and semantic factors help children and
L2 learners to learn restrictions for the verb use in
various argument structure constructions (Ambridge &
Brandt, 2013; Ambridge, Pine, & Rowland, 2012;
Ambridge, Pine, Rowland, Freudenthal, & Chang, 2014;
Ambridge et al., 2015, etc.). Although these studies
mostly use grammaticality judgements, a production
experiment has been reported as well (Blything,
Ambridge, & Lieven, 2014). This line of research demon-
strates the role of both distributional and semantic
factors in construction learning. Their results in terms
of the role of distributional factors are consistent with
other studies mentioned above. As for the role of seman-
tics, Ambridge and colleagues in their studies use a very
different interpretation of verb semantics, focusing on
fine-grained discriminative features of the verb
meaning, which are based on Pinker’s (2013) verb
classes (we return to this issue in the final discussion).
This makes it difficult to compare their findings in
terms of verb semantics to what other studies report.

In short, there is no conclusive evidence about the
exact contribution of each specific factor to explaining
the verb use within argument structure constructions.
We focus on the studies of EOR, because they investigate
both groups of factors on a large set of constructional
patterns.

Methodological issues
There are two potential methodological issues in EOR’s
analyses, which may have some implications for the eco-
logical validity of their studies. The first issue relates to
how the values of the predictor variables (in particular,
frequency and contingency) are obtained. All input esti-
mates are based on the British National Corpus (BNC).
Although the use of large corpora for approximating
language input to learners is rather common and well

justified overall, the method has certain shortcomings
when it comes to accounting for the individual variation
between speakers (e.g. Blumenthal-Dramé, 2012). The
variation in individual experiences with a language
may lead to the formation of different linguistic rep-
resentations in learners (Dąbrowska, 2012; Misyak &
Christiansen, 2012). The variation is even higher among
L2 learners, whose learning trajectories may vary
greatly (e.g. Grosjean, 2010). In EOR’s case, verb pro-
duction data obtained from multiple individuals are pre-
dicted by input-related measures computed from a
corpus, which is, again, generated by a language com-
munity. This way, EOR demonstrate that their model pre-
dicts verb selection on the population level. But
cognition is individual, and for making informed claims
about cognitive representations we need to test the
selection model on the input to individual speakers
and individuals’ production data. This is a challenging
task for studies with human subjects, because it is
nearly impossible to account for the whole learning
history of an individual.

Another issue we focus on relates to the use of cumu-
lative frequency of verb production. Calculating the total
number of times each verb has been produced by all the
speakers in a specific construction results in losing the
information about the order of production. Yet, the
order of verb listing must also be taken into account.
For example, the verb position in a produced list has
been shown to correlate with the frequency of pro-
duction of this verb in a category-listing task (Plant,
Webster, & Whitworth, 2011). Similarly, studies on sen-
tence production show that, all things being equal, the
more accessible (prototypical, frequent) word in a word
pair tends to be placed earlier in a sentence than the
less accessible one (e.g. Bock, 1982; Onishi, Murphy, &
Bock, 2008). These findings suggest it is important to
account for the order of verb production in the
experimental task described above. In fact, EOR
briefly mention this issue among the limitations of
their study.

One objective of the current study is to simulate EOR’s
experiments using the computational model of argu-
ment structure construction learning (Alishahi & Steven-
son, 2008; Matusevych, Alishahi, & Backus, 2015b). The
second objective is to test whether the findings of EOR
still hold after addressing the two methodological
issues described above; the computational model is par-
ticularly helpful in this respect. First, it provides us with
control over the input to each simulated learner, and
eliminates other possible sources of individual variation,
related to learners’ cognitive abilities, propensities, etc.
(Ellis, 2004). Second, the model generates the probability
of production of each verb, which makes it easy to
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account for the order of verb preference (see Test data
and elicited production below).

Our final objective relates to the original prediction
model, which uses frequency, contingency and prototy-
picality to explain verb selection. Based on some theor-
etical premises presented in the next section, we
propose a refined prediction model in the current
study, and show that it may have a higher explanatory
power than EOR’s original model. We proceed with a
critical overview of the three variables used in the orig-
inal experiments.

Factors affecting verb selection

Input frequency
Language learners are sensitive to frequencies of occur-
rence of linguistic units in the input. Frequency effects
have been demonstrated in many domains of language
processing and language use (see overviews by
Ambridge, Kidd, Rowland, & Theakston, 2015; Divjak &
Caldwell-Harris, 2015; Lieven, 2010; Diessel, 2007). Fre-
quencies also relate to the concept of entrenchment in
cognitive linguistics: more frequent words (in this case,
verbs) get entrenched stronger in learners’ minds,
which makes them more accessible (Bybee, 2006; Lan-
gacker, 1987; Schmid, in press). Although the existence
of frequency effects is commonly recognised in cognitive
linguistics, it is unclear yet which frequencies count (Ellis,
2012): of a particular word form (goes), of a lemma (all
occurrences of go, went, etc.), of a form used in a specific
function (go as an imperative), of an abstract meaning
alone, etc. The frequency effect may also depend on
the level of granularity of the examined units (Lieven,
2010). The complexity of the issue is reflected in the
number of different kinds of frequencies discussed in
the literature:

. Token vs. type frequency (Bybee & Thompson, 1997):
the number of occurrences (tokens) of a specific
lexical unit in a corpus vs. the number of various
specific units (types) in a corpus matching a given
abstract pattern.

. Absolute vs. relative frequency (Divjak, 2008; Schmid,
2010): the absolute measure denotes the independent
frequency of a unit (e.g. the verb go has been pro-
duced 25 times in the construction he/she/it VERB

across NOUN), while the relative measure relates the
frequency of the target unit to the frequencies of com-
petitor units, capturing this way paradigmatic
relations of the units (e.g. the verb go takes a 10%
share of all the verb tokens produced in the construc-
tion he/she/it VERB across NOUN). This difference
between the measures has to do with the notion of

contingency (association strength), discussed in
more detail in the next section. It is useful to visualise
it using a verb–construction frequency (or contin-
gency) table (see Table 1): the absolute verb fre-
quency is expressed as a+b, while the relative
frequency must relate this value to the frequency of
competing verbs, c+d.

. Marginal vs. joint frequency: unlike the previous pair,
this distinction concerns the syntagmatic relations of
two units. A unit’s marginal frequency is its overall fre-
quency in a corpus (e.g. the verb go occurs in the BNC
approximately 86,000 times); also sometimes referred
to as “raw frequency”. In Table 1, the marginal fre-
quency of the target verb is denoted as a+b, and
the marginal frequency of the target construction is
a+c. The joint frequency a, on the other hand,
denotes how frequently the target verb occurs in
the target construction (e.g. the verb go in the con-
struction SUBJ VERB across LOC occurs in the BNC
approximately 120 times).

This last distinction requires further attention here. EOR
in their analysis always employ the joint verb–construc-
tion frequency as one of the predictors. This measure
has been considered in studies of some linguistic beha-
viours, such as acceptability judgements (e.g. Divjak,
2008), as well as in language acquisition (e.g. Theakston
et al., 2004). However, these studies also take into
account the marginal verb frequency. In particular,
Ambridge et al. (2015) argue that both types of frequen-
cies affect child language learning. Talking about pro-
duction in particular, Blything et al. (2014) carried out a
production experiment with children, and used, among
others, measures called “entrenchment” and “preemp-
tion” to predict the probability of verb production.
Both measures were based on the overall frequency of
a verb (or verbs) in the BNC, and their observed effects
also support the idea that the marginal verb frequency
is important. This idea is also in line with the theoretical
account of units’ entrenchment in the cognitive system,
proposed by Schmid and Küchenhoff (2013), Schmid
(2010). They distinguish between cotext-free and cotex-
tual entrenchment: while cotext-free entrenchment is
related to the marginal item frequency, cotextual
entrenchment captures syntagmatic associations
between items, just as the joint frequency of two items

Table 1. A verb–construction contingency table.
Target construction Other constructions Total

Target verb a b a+b
Other verbs c d c+d
Total a+c b+d a+b+c+d
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does.2 For measuring the syntagmatic association
strength, various association measures have been pro-
posed, which we discuss in the next section.

At this point, it is important to note that the verb
selection model of EOR does not take into account the
marginal verb frequency, and we believe that including
this variable in the model could improve it. EOR motivate
their exclusion of the marginal verb frequency (“raw”, in
their terminology) by the fact that verb selection in their
test correlates better with the joint verb–construction
frequency than with the marginal verb frequency. But
assuming the potentially independent effects of the
two kinds of frequencies, the inclusion of the marginal
verb frequency into the model may be justified.

Contingency of mapping
The second factor in EOR’s model is contingency, or the
reliability of verb–construction mapping. Although EOR
use a particular measure explained below, contingency
is an umbrella term for multiple measures of the associ-
ation strength between a particular verb and a particular
construction. The notion of contingency comes from the
paradigm of human contingency learning, focusing on
learning associations between stimuli, which are often
described in terms of cues and outcomes. The term is
rarely used in linguistic studies, which prefer talking
about association strength, or about “contextualised” fre-
quency measures (Divjak & Caldwell-Harris, 2015). Joint
verb–construction frequency is the simplest example of
such a measure, while other measures represent more
sophisticated ways to quantify how well a verb and a
construction go together. Therefore, we argue that the
simultaneous use of two contingency measures within
the same model may be redundant.

In various disciplines, the impact of contingency has
been shown to be independent from that of frequency.
In particular, some classical models of memory recall
implement the effects of frequency and association
strength independently of one another (Anderson,
1983; Gillund & Shiffrin, 1984). Studies on item- versus
association-memory in word retrieval also indicate that
these two types of memories are independent of each
other (e.g. Hockley & Cristi, 1996; Madan, Glaholt, &
Caplan, 2010). However, these studies talk about the
marginal item frequency, which, as we have mentioned,
deals with an item in isolation. Therefore, the mentioned
studies can hardly be used as an argument in favour of
the independent effects of joint frequency and contin-
gency within the same model.

The second issue related to contingency has to do
with the ongoing discussion in cognitive linguistics
about which contextualised measure has a higher pre-
dictive power (Bybee, 2010; Divjak, 2008; Gries, 2013,

2015; Küchenhoff & Schmid, 2015; Schmid & Küchenhoff,
2013; Stefanowitsch & Gries, 2003). Just as in the previous
section, these measures are commonly presented using a
contingency table (see Table 1). Despite a great number
of proposed association measures (see overviews by
Evert, 2005; Pecina, 2010; Wiechmann, 2008), we can
make a simple distinction between three types, based
on how many of the table cells a–d the measure takes
into account (e.g. Divjak, 2008; Divjak & Caldwell-Harris,
2015):

1 Raw joint frequency (cell a) is the most intuitive way to
measure how well a verb and a construction go
together: the verb go in the construction SUBJ VERB

across LOC occurs in the BNC approximately 120 times.
2 Conditional probabilities relate the joint frequency to

the marginal token frequency of either a
construction (Attraction = a/(a+ c)) or a verb
(Reliance = a/(a+ b)). Such normalisation of the raw
joint frequency is useful when, for example, multiple
constructions with different frequencies are studied:
the same number of 120 occurrences of a particular
verb may account for 90% of all verb usages in one con-
struction, but only for 10% in another one.

3 Complex associative measures take into account all
the four cells a–d. An example of such a measure is
ΔPAttraction, or DP (construction � word) = a/(a+ c)
−b/(b+ d), which is used in the original studies of
EOR. Other popular measures include, e.g. Minimum
Sensitivity (Wiechmann, 2008) and the p-value of
Fisher–Yates exact test (Stefanowitsch & Gries, 2003).
The use of such measures can be motivated by the
need to capture the competition between the verbs
and the constructions at the same time, in particular
to address the problem of hapax legomena. For
example, in a study of as-predicative (Gries, Hampe,
& Schönefeld, 2005) the unrepresentative verb cata-
pult scored highest in Reliance among many other
verbs, only because it never occurred in other con-
structions in the corpus. The use of a complex
measure solved the problem in their case. At the
same time, other researchers (e.g. Blumenthal-
Dramé, 2012; Divjak, 2008; Schmid & Küchenhoff,
2013) suggest that complex measures may have
little advantage over the conditional probabilities
(type 2 above).

To summarise, we think that including both joint fre-
quency and DP (or any other contingency measure)
into the model, as in EOR’s studies, may not be well jus-
tified. We suggest that only one such measure should be
considered in the analysis, while the other is redundant.
In the current study, we consider one measure of each
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type specified above, as well as their combinations, to
test which of them predicts verb selection better.

Semantic prototypicality
Semantic prototypicality is a concept borrowed from
studies on category structure; it is also known under
alternative names, such as “family resemblance” (Rosch
& Mervis, 1975), “goodness-of-example” (Mervis, Catlin,
& Rosch, 1976), “typicality”, “goodness of membership”
(Onishi et al., 2008), etc. It is common in cognitive
science to estimate the typicality of concepts within a
semantic category using so-called category norms –
ranked lists of items based on human production data
(e.g. Kelly, Bock, & Keil, 1986; Plant et al., 2011). EOR,
however, do not use this approach, as it would lead to
circular reasoning: prototypicality is used to predict the
production data, and thus can not be computed based
on other production data. Instead, for each considered
construction (e.g. he/she/it VERB across NOUN) they build
a semantic network of verbs participating in this con-
struction (go,move, face, put, etc.). This network is organ-
ised according to the similarity of verb meanings, as
informed by WordNet (Miller, 1995). Using a network
for a particular construction, they compute a measure
called betweenness centrality, which indicates the cen-
trality of each verb’s meaning in this construction. This
way, the most general verbs in the construction (in this
case, go and move) tend to obtain higher prototypicality
values (see Gries & Ellis, 2015; Römer et al., 2015, for more
detail). In this sense, “semantic generality” would be a
more suitable term; however, we follow EOR and other
studies mentioned next in using the word “prototypical-
ity”. An additional advantage of EOR’s method to
compute prototypicality is that the resulting values are
independent of the corpus-based frequency and contin-
gency measures.

Semantic prototypicality has also been studied in
language acquisition research: semantically general
verbs have been suggested to be “pathbreaking” in
child language use (e.g. Ninio, 1999a,b). However,
semantic generality is often confounded with input fre-
quency: general verbs tend to be used most frequently
(Goldberg et al., 2004; Ninio, 1999a), and the indepen-
dent effect of semantic generality is not always found
(Theakston et al., 2004). At the same time, EOR argue
that the effect of semantic prototypicality is independent
of frequency: while frequency relates to entrenchment,
prototypicality has to do with the spreading activation
in semantic memory (Anderson, 1983): if verbs within a
construction form an interconnected network, then
more central (general, prototypical) verbs in this
network are more likely to be activated, and thus to be
produced. To summarise, there is no conclusive evidence

on whether the semantic prototypicality of a verb is a
good predictor of its use.

Summary
This theoretical overview shows that the role of both the
distributional (frequency, contingency) and the semantic
factors (prototypicality) requires further research. In particu-
lar, it is unclear yet whether marginal verb frequency plays
an independent role in predicting verb selection; which
measures of contextual frequency should be included
into a prediction model, and how many of such measures;
finally, the role of semantic prototypicality is under discus-
sion. We will address these issues in our study, but first we
proceed with its methodological description.

Material and methods

Study overview

Figures 1–3 present a schematic overview of the design
employed in the original studies and in the present
study, the latter being divided into three main steps.
Only a brief summary for each step is given here, while
more detail can be found in the respective sections below.

Figure 1. Design of EOR’s study and its simulation; updated com-
ponents are marked with a darker colour. (a) Original study and
(b) Our initial study: computational simulations replace human
speakers.
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There are three main blocks of the original study:
(1) experiment, (2) linguistic input, and (3) prediction
model (Figure 1(a)). During the experiment, L1 or L2
speakers are exposed to a set of constructions with
the main verb missing, and produce a set of verbs.
Three predictor variables are extracted from the
BNC, under the assumption that this corpus provides
an approximation of the linguistic input that partici-
pants have been exposed to in their lifetime. These
variables are then used in the prediction model to
explain the frequency of production of verbs within
constructions.

The overall design of our first step (Figure 1(b)) is
almost identical, except we use computational simu-
lations instead of human speakers, and different data
sets. The goal of this step is to check the validity of our
computational model; that is, to see whether it selects
verbs that fit the target constructions, and whether
such selection can be explained by the same input-
related features as in EOR’s experiments.

At step two we address the methodological issues
described earlier (Figure 2). First, we distinguish
between individual input samples instead of generalising
over the whole population (see Addressing the methodo-
logical issues: Individual variation below, also Figure 2(a)).
Second, in a parallel analysis, we employ the production
probability instead of production frequency, to account
for the order of verbs produced by speakers (more
detail below, under Addressing the methodological
issues: Order of preference, also Figure 2(b)).

At the final step three, we test various predictionmodels
to select the one that explains the simulated data sets best,
using the two types of design from step two (see Figure 3).
The following sections describe the essential components
of the study: computational model, input data, experimen-
tal set-up, and predictor variables.

Computational model

The model used in the current study is based on a model
of human category learning, which was shown to repli-
cate multiple experimental findings in this area (Ander-
son, 1991). Alishahi & Stevenson (2008) employed the
same learning algorithm for simulating early learning
of argument structure constructions (which is sometimes
seen as a categorisation task: Goldberg et al., 2004). The
model of construction learning demonstrated similarity
to human data in terms of U-shaped learning patterns,
use of syntactic bootstrapping (in both production and
comprehension), phenomena of over-generalisation
and recovery (Alishahi & Stevenson, 2008, 2010).
Finally, the model was adapted for simulating bilingual
construction learning, demonstrating effects of amount
of input similar to those in human learning (Matusevych
et al., 2015b).

The model relies on some theories of cognitive lin-
guistics and construction grammar, in particular those
of Goldberg (1995), Tomasello (2003); for more details,
see Alishahi and Stevenson (2008). Most importantly,
the input is processed iteratively, so that constructions
gradually emerge from categorising individual instances
item by item (similar to the theory described by Gold-
berg et al., 2004). At the end of the learning process,
the model uses its knowledge of argument structure
constructions in the elicited verb production task.
While the learning model has been used before, the
implementation of the test task for this model is novel.
We describe these steps in more detail.

Input representations
The model is exposed to a number of instances, each of
which represents a single verb usage in a specific con-
struction. Each instance comprises several information

Figure 2. Analyses addressing methodological issues; updated
components are marked with a darker colour. (a) Accounting
for individual differences: specific input samples and individuals’
production lists are used and (b) Accounting for order of prefer-
ence: production probability replaces production frequency.
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cues characterising the respective verb usage. Table 2
shows such a usage, with the full set of features listed
in the left column.

Wemake a simplifying assumption that the model can
infer the values of all the provided features from the

utterance and the respective perceptual context. This
means, in particular, that the model can recognise the
words in the utterance and infer their meanings and lin-
guistic cases (where appropriate) ,3 as well as to identify
the role of each participant in the described event.

Each feature Fk is assigned a value within an instance I,
so that I is a unique combination of specific feature
values (FIk). Following some linguistic theories (e.g.
Dowty, 1991; McRae, Ferretti, & Amyote, 1997), features
expressing semantic and thematic role properties are
represented as a set of elements each, and these sets
were semi-automatically obtained from the existing
resources (see Input data and learning scenarios below).
Regarding the thematic roles, it has been shown that
the model used in this study can learn representations
of “traditional” thematic roles (e.g. AGENT, THEME) from dis-
tributed sets of properties (Alishahi & Stevenson, 2010). A
distributed representation of the thematic roles in the

Figure 3. Refining the prediction model; updated components are marked with a darker colour. (a) Models accounting for individual
differences: alternative sets of predictors are considered (cf. Figure 2(a)) and (b) Models accounting for order of preference: alternative
sets of predictors are considered (cf. Figure 2(b)).

Table 2. An instance for the verb usage We sold the house.
Feature Value

Head predicate sell
Predicate semantics EXCHANGE, TRANSFER, POSSESSION, CAUSE

Number of arguments 2
Argument 1 we
Argument 2 house
Argument 1 semantics REFERENCE, PERSON … , ENTITY

Argument 2 semantics DWELLING, HOUSING … , BUILDING

Argument 1 thematic role COMPANY (N1), PERSON (N1) … , CIVILISATION (N1)

Argument 2 thematic role RELATION (N1), MATTER (N3) … , OBJECT (N1)

Argument 1 case N/A

Argument 2 case N/A

Syntactic pattern ARG1 VERB ARG2
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current study provides at least two advantages over
representing each role as a single symbol. First, set rep-
resentations enable the model to estimate how similar
lexical meanings or thematic roles are to each other.
Second, computing the semantic prototypicality of a
verb is rather straightforward for set representations of
verb meanings (see Predictor variables below). As can
be seen in Table 2, each verb meaning is represented
as a set of semantic primitives describing this meaning:
e.g. {EXCHANGE, TRANSFER, POSSESSION, CAUSE} for the verb
sell. These elements are automatically extracted from
available sources (see section Input data and learning
scenarios below). An argument structure construction
(henceforth ASC) emerges as a generalisation over indi-
vidual instances, where each feature contributes to
forming the generalisation. An ASC combines the
feature values from all the participating instances, but
it is impossible to recover individual instances from an
ASC (unless it only contains a single instance). An individ-
ual instance is a set FI of feature values FIk (F

I
k [ FI), and

an ASC S is a set FS of feature values FSk (FSk [ FS), but in
an ASC each feature value (e [ FSk ) may occur more than
once, depending on the number of participating
instances with the value Fk = e.

Learning mechanism
The learning is performed using an unsupervised naive
Bayes clustering algorithm. As we mentioned, the
model receives instances one by one, and its task is to
group the incoming instances into ASCs by finding the
“best” ASC (Sbest) for each given instance I:

Sbest(I) = argmax
S

P(S | I). (1)

In other words, the model considers each ASC it has
learned so far, seeking the most suitable category for
the encountered instance. It makes little sense to talk
about the probability of an ASC (prior knowledge)
given an instance (new evidence); therefore, the Bayes
rule is used to estimate the conditional probability in
Equation (1):

P(S | I) = P(S)P(I | S)
P(I) . (2)

The denominator P(I) is constant for each ASC, and there-
fore plays no role in making the choice. The choice of
ASC for the new instance is affected by the two factors
in the numerator:

(1) The prior probability P(S), which is proportional to
the frequency of the ASC in the previously encoun-
tered input (or the number of instances that the

ASC contains so far, |S|):

P(S) = |S|
N + 1

, (3)

where N is the total number of instances encoun-
tered by that moment. The learner always has an
option to form a new ASC from a given instance.
Although initially such a potential ASC contains no
instances, its value |S| is assigned to 1, to avoid 0s
in the multiplicative Equation (2). The determining
role of frequency is grounded in usage-based linguis-
tics: a frequent ASC is highly entrenched and is easier
to retrieve from memory, so that new instances are
more likely to be added to it.

(2) The conditional probability P(I | S), which takes into
account how similar an instance I is to S. The higher
the similarity between I and S, the more likely I to
be added to S: this is based on studies pointing to
the importance of similarity in categorisation tasks
(e.g. Hahn & Ramscar, 2001; Sloutsky, 2003). The
model compares each instance to each ASC by
looking at the independent features listed in Table
2, such as the head predicate, argument roles, etc.
For example, all being equal, two usages of the
same verb are more likely to be grouped together
than two usages of different verbs, yet this can be
compensated by other features. Technically speaking,
the overall similarity is a product of similarities for indi-
vidual features:

P(I | S) =
∏|FI |

k=1

P(FIk | S). (4)

The probability P(FIk | S) in this equation is estimated
differently depending on the feature type, see
appendix.

Based on the computed values of the prior and the con-
ditional probability, the model either places I into an
existing ASC or creates a new ASC containing only one
instance I. Note that when the model receives instances
from two languages during a simulation, L1 and L2
instances are not explicitly marked as such. The only rel-
evant information is implicitly present in the values of
such features as head predicate, arguments, and syntac-
tic pattern (in case it has prepositions). This ensures the
model treats all instances equally, irrespective of their
language.

Input data and learning scenarios

Following the original experiments, we simulate L1
English (as in Ellis et al., 2014a) and L2 English learning
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(as in Ellis et al., 2014b). Although the latter study was
carried out with native speakers of German, Spanish,
and Czech, we only use L1 German due to poor data
availability. Manual annotation of argument structures
proved to be rather time-consuming; therefore, we
used available annotated resources for English and
German to automatically extract the data we needed.

We use the data sets available from Matusevych et al.
(2015b); here we briefly outline how they were obtained.

(1) The Penn Treebank for English (WSJ part, Marcus
et al., 1994) and the TIGER corpus for German
(Brants et al., 2004) were used to obtain syntactically
annotated simple sentences.

(2) Argument structures were extracted from these sen-
tences, using the annotations in English PropBank
(Palmer, Gildea, & Kingsbury, 2005) and the
German SALSA corpus (Burchardt et al., 2006).

(3) We further used only the sentences containing Fra-
meNet-style annotations (Ruppenhofer, Ellsworth,
Petruck, Johnson, & Scheffczyk, 2006), either via the
PropBank–FrameNet mappings in SemLink for
English (Palmer, 2009), or in the SALSA corpus for
German.

(4) Word semantic properties were obtained from
WordNet (Miller, 1995) and VerbNet (Schuler, 2006).

(5) Symbolic thematic roles were semi-automatically
replaced by sets of elements through the
WordNet–FrameNet mappings (Bryl, Tonelli, Giu-
liano, & Serafini, 2012).

The resulting German and English data sets contain 3370
and 3624 ASC instances, respectively, which are distribu-
ted across 301 (German) and 319 (English) verb types.
The corpora mentioned above were the only large
sources of English and German data for which the anno-
tations of argument structure were available. We
acknowledge that the kind of language in these
corpora (mostly newspaper texts) differs from what L1
and L2 learners are normally exposed to. Moreover, the
distributions of verbs and constructions in the corpora
may be genre- or domain-specific and differ from
English and German in general, and the data sets are
limited in size: many constructions occur with only a
few verb types (we look at this in more detail below,
see L1 simulations). This prevents us from making state-
ments about specific English verbs or constructions, yet
the extracted data sets do suit our goal of studying the
impact of individual input-related factors on the pro-
duction of verbs in constructions.

Input to the computational model is sampled ran-
domly from the distribution of instances in the presented
data sets. This way, the exact input to the model varies

between simulations, to simulate a population of lear-
ners with individual linguistic experiences. In the L1
learning set-up, 100 simulated learners receive a cumu-
lative number N=6000 English instances. Clearly,
human adult speakers are exposed to much more
input than 6000 utterances, but given the size of our
data sets, this value is large enough: an earlier study
(Matusevych et al., 2015b) showed that the model
achieved a stable level of ASC knowledge on the target
input data set after receiving 6000 instances. In the L2
set-up, 100 learners are exposed to N=12,000 instances:
6000 L1 German instances, followed by 6000 instances
of “bilingual” input, in which English and German are
mixed in equal proportions. This way, L2 learners only

encounter
1
2
× 6000 = 3000 English instances, to simu-

late non-native speakers whose L2 proficiency is lower
than L1 proficiency.

Test data and elicited production

Learning was followed by the elicited production task.
The model was provided with a number of test items,
each of which was intended to elicit the production of
verbs in a single construction. Following the original
experiments, we looked at the representation of verbs
within form-based constructions, without the semantic
component: just as EOR’s participants, the model is free
in its interpretation of the arguments’ thematic roles.
We further refer to these units as “constructions”, to dis-
tinguish them from the emergent ASC representations in
the computational model. We did not limit our analysis
to prepositional constructions with only two arguments
(as did EOR), because this would substantially reduce
the amount of the available data in our case. Instead,
we used all the available constructions. In terms of ASC
representations used by the model, each construction
was defined as a syntactic pattern, e.g. ARG1 VERB about
ARG2 (for a full list of patterns, see Table 4). To follow
the design of the original experiments, we constructed
the test stimuli as follows. Following EOR’s approach,
two stimuli were generated for each construction: the
first one had either a pronoun he or a pronoun she (ran-
domly selected) as the first argument head, and the
second one had a pronoun it as the first argument
head. This way, each stimulus occurred once with an
animate (s/he) and once with an inanimate pronoun
(it). The other argument heads were masked, together
with the verb. Therefore, during the testing the model
was provided with a number of test ASC instances Itest,
which only contained the values of a few features:
number of arguments, syntactic pattern, the first argu-
ment (the selected pronoun) and its semantics (e.g.
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{REFERENCE, PERSON … , ENTITY} for he). As a result, test
stimuli were similar to those used in the original exper-
iments (in this case, he _____ about the… ). Given a
test instance, the model’s task was to produce a list of
verbs fitting the empty slot. Such elicited production is
implemented as a generation of a set of verbs enumer-
ated with their respective probabilities of production
(Vproduced). There is no upper boundary for the number
of verbs produced, but verbs with low probabilities of
production are excluded from the analysis. The prob-
ability of each Vj [ Vproduced given a test instance Itest is
calculated as follows:

P(Vj | Itest) =
∑

S

P(Vj | S)P(S | Itest). (5)

The right side of Equation (5) is a sum of the products
of two probabilities, computed for each acquired ASC.
P(Vj | S) is estimated as provided in appendix (Equation
(A1)), and P(S | Itest) is transformed and computed in
exactly the same way as during the learning (see
Equations (2)–(4)). In other words, to select verbs to fill
in a test stimulus, the model first computes how similar
the stimulus is to each ASC, and assigns the similarity
weights to ASCs. Next, the model considers each verb
associated with an ASC, and takes into account both
the frequency of the verb in this ASC and the similarity
weight of the ASC, to obtain the evidence from this
ASC in favour of selecting particular verbs. Finally, such
evidence values from all the existing ASCs add up, deter-
mining the final selection probability of each verb.

Note that our model is not equipped with explicit
language control mechanisms, which human speakers
can use for inhibiting activated representations from a
non-target language (Green, 1998; Kroll, Bobb, Misra, &
Guo, 2008). Therefore, the model may produce L1
verbs in the L2 elicited production task, which is taken
into account in our analysis of production data.

Predictor variables

The predictor variables proposed in the original exper-
iments are the joint verb–construction frequency
F(v, c), the DP-contingency DPA(v, c), and the prototypi-
cality of verb meaning Prt(v, c). These measures are used
for predicting the selection of verbs within each con-
struction. Therefore, the measures are obtained based
on the input data which the input to the model is
sampled from. Two different methods are used for com-
puting the values.

Our first goal is to simulate the original experiments of
EOR closely following their analysis; therefore, we adopt
their approach of calculating the values of F(v, c),
DPA(v, c), and Prt(v, c) from the whole English data set,

without accounting for the individual variation in the
input. The value of joint frequency F(v, c) is extracted
from the input data set directly, together with additional
measures such as the marginal verb frequency F(v), and
the marginal construction frequency F(c): these were
needed for computing the value of contingency
DPA(v, c):

DPA(v, c) = P(v | c) − P(v | ¬c)

= F(v, c)
F(c) − F(v) − F(v, c)

N − F(c) , (6)

where N denotes the total size of the input data, in this
case 3624 instances. In simple terms, DP-contingency is
the probability of a verb given a construction minus
the probability of the verb’s occurrence in all the other
constructions. DP can take values as high as 1 (when
the verb mostly occurs with the target construction)
and as low as −1 (when the verb is proportionally
much more frequent in other constructions).

As for prototypicality, recall that each verb meaning in
ASC instances is represented as a set of elements (e.g.
{EXCHANGE, TRANSFER, POSSESSION, CAUSE}), and we consider
a verb v to have a higher prototypicality in a construction
c when its meaning Mv shares more elements with the
meanings Mi of all the other verbs i (excluding v) occur-
ring in c (i [ c \ v):

Prt(v, c) =
∑

i[c\v
|Mi >Mv|

|Mv|
|c \ v| , (7)

where |c \ v| is the number of verb types participating in
c, excluding v. We did not use EOR’s betweenness cen-
trality values, because they were based on a so-called
path similarity between verbs in WordNet, but the hierar-
chy of verbs in WordNet did not reflect the true hierarchy
of verb meanings in our data sets.4 At the same time,
Prt(v, c), as defined here, operates on the actual sets
used in ASC instances, and suits our set-up. The two
measures, however, are conceptually similar: more
general verbs with fewer semantic components (give:
{POSSESSION, TRANSFER, CAUSE}) tend to score higher than
more specific ones (purchase: {BUY, GET, POSSESSION, TRANS-
FER, CAUSE, COST}).

Our second goal is to address the methodological
issues, in particular individual variation, therefore in the
respective analysis the values of the three measures
are calculated for each simulated learner individually,
based on the actual input sample it receives. To do
this, during each simulation we record the information
about the occurrence of individual verb usages in the
actual input: F(v), F(c), and F(v, c). Thus, the value of
joint frequency F(v, c) is directly available from the

LANGUAGE, COGNITION AND NEUROSCIENCE 1225

http://dx.doi.org/10.1080/23273798.2016.1200732


recorded information, and the values of contingency
DPA(v, c) and prototypicality Prt(v, c) are calculated as
given above (Equations (6)–(7)), but based on a particular
input sample instead of the whole data. N in this case is
equal to the actual amount of input: 6000 for L1 or
12,000 for L2 simulations.

The goal of our final study is to identify the best set of
variables predicting verb selection. In particular, when
presenting the three types of contingency measures,
we have mentioned that we plan to test one measure
of each type. A raw frequency measure F(v, c) is available
directly, and a complex measure DPA(v, c) is calculated
according to Equation (6). Therefore, we only need a
measure of the second type, a conditional probability.
We use Attraction(v, c), henceforth A(v, c), which nor-
malises the joint verb–construction frequency by the
marginal construction frequency:

A(v, c) = P(v | c) = F(v, c)
F(c) . (8)

The next section describes our simulations and the
obtained results. First, we simulate the original exper-
iment for L1 (Ellis et al., 2014a, experiment 2) and for
L2 (Ellis et al., 2014b), keeping our set-up and analysis
as close as possible to the original experiments, to see
whether our model produces results similar to those of
the original experiments. Next, we address the two
methodological issues by reanalysing the data
obtained from the same simulated learners, to
examine whether the original results still hold in the
new analysis. Finally, we use a number of regression
models which include different combinations of predic-
tions, to determine which factors predict the pro-
duction data best.

Simulations and results

Simulating the original experiments

In this section we employ the elicited production task
described under Test data and elicited production above
to obtain a list of produced verbs. Using this list, we
look at the verbs produced within some individual con-
structions, run correlation tests for individual construc-
tions, and perform a combined analysis on the whole
data set as described next.

Methodological details
Each simulated learner has produced a list of verbs fitting
every given construction. EOR in their experiments
limited the number of produced verbs by allocating a
minute for each stimulus. To adopt a similar approach,
we had to filter out verbs whose probability of

production was lower than a certain threshold. The
value of .005 was established empirically, by testing
values between .05 and .001. Using this threshold
value, for each verb in a certain construction we calculate
the total production frequency of this verb by all learners,
henceforth PF(v, c). If a verb has not been produced by
any learner in a certain construction, the verb–construc-
tion pair is excluded from the analysis, to obtain data
similar to EOR’s. For analysing L2 production data, we
exclude all L1 verbs produced by the model, because
these are irrelevant for our analysis.

First we look at the verbs produced within a sample of
10 individual constructions: four most frequent construc-
tions in our data set, and six constructions present in
both EOR’s and our data set.

Next, to compare our model to EOR’s human subjects,
we look at whether each of the three factors – F(v, c),
DPA(v, c), and Prt(v, c) – correlates with PF(v, c) within
each construction in our data set, using Pearson corre-
lation coefficient.5

Finally, we proceed with a combined regression analy-
sis on the whole data set. Again, to make the results com-
parable with EOR’s findings, we first consider only the six
constructions present in both their and our data set.
However, this is a rather small sample; therefore, we run
an additional regression analysis on our whole data set
of 44 constructions. Before fitting the models, we standar-
dise all the variables, to make the β coefficients directly
comparable and to reduce the collinearity of predictors.
We run multiple regression analyses to predict PF(v, c)
by the three factors: F(v, c), DPA(v, c), and Prt(v, c). Note
that the values of the mentioned variables in this simu-
lation set are computed using the first method described
in the section Predictor variables – that is, for the whole
input data set, following the original experiments.

L1 simulations
First, we look at the verbs produced by the model
within 10 individual constructions selected as
described above: the produced lists are provided in
Table 3. We can see substantial differences between
the frequencies of occurrence of individual construc-
tions in the input data. Some of them are rather fre-
quent: e.g. A1 V A2 occurs 2508 times with 224 verb
types, and A1 V occurs 724 times with 119 verb types.
In contrast, most prepositional constructions are infre-
quent: in particular, the six constructions from EOR’s
data set occur only 1–11 times with 1–6 verb types.
Respectively, the number of verb types generated by
the model per construction also varies between 2.4
and 84.2 in this subset of 10 constructions. It is also
clear from the table (see bold italic font) that the
model sometimes produces verbs which are unattested
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in the target construction in the input. We discuss this
in the interim discussion below.

To see whether the frequencies of verb production
correlate with each of the three target factors, as in
EOR’s study, we run a series of correlation tests reported
in Table 4.

We can see that both the joint frequency F(v, c) and
DP-contingency are correlated with the production fre-
quency PF(v, c) for almost all constructions: verbs
which appear more frequently in a construction or
which are associated more strongly with a construction
are also produced more frequently by the model. This
is not always the case for the third predictor, prototypi-
cality Prt(v, c): significant correlations of this variable
with production frequency are only observed for 23
out of 44 constructions. In particular, there is no such cor-
relation for any of the six constructions present in EOR’s
data (marked with an asterisk in Table 4). We address this
issue below in the interim discussion. The next step, as
we mentioned above, is to provide combined regression
analyses of the data set.

The summary of the three models is provided in Table
5 (a) and 5 (b). Overall, the results are similar to what EOR

report: all the three variables contribute to predicting the
verb production frequency. However, the difference is
that Prt(v, c) in our experiment appears to be a less
important predictor, which is reflected in the β values
(from 0.05 to 0.06 in our study, depending on the set
of constructions, vs. 0.29 in the original study). We
have run an additional analysis, in which we kept the
verbs that appeared in a construction in the input, but
were not produced in this construction by the model:
PF(v, c) for such verbs was assigned to 0. Besides, we
have run mixed-effects models (e.g. Baayen, 2008), as
implemented in R (Bates, Mächler, Bolker, & Walker,
2015), for the same two sets of constructions, with a
random intercept and random slopes for all the three
factors over individual constructions. The results
appeared to be very similar to what is reported here;
therefore, we leave them out for brevity.

L2 simulations
For the sake of space we omit the lists of verbs produced
in the L2 simulations, as well as the correlational results
per construction. There were some differences between
the actual sets of verbs produced in L1 and L2 simulations,

Table 3. Ten constructions with their frequencies and produced verbs.
Construction

Property A1 V A2 A1 V A1 V A2 A3 A1 V A2 to A3 A1 V about A2

Verb tokens in input 2508 724 112 52 11
Verb types in input 224 119 8 12 4
Verb types produced 228 115 66 47 146
Avg. verb types produced 84.2 35.5 9.7 11.6 10.6
Verb types with their production frequencies want: 185 want: 169 give: 143 send: 139 complain: 175

buy: 184 begin: 135 send: 117 give: 137 inquire: 154
sell: 182 die: 108 pull: 90 elect: 99 brag: 131

announce: 170 exist: 104 tell: 58 propose: 87 shout: 96
receive: 169 happen: 103 place: 37 disclose: 77 listen: 41
hold: 167 expire: 102 disclose: 36 donate: 71 sit: 19
see: 162 rise: 99 drag: 33 pass: 70 groan: 17
start: 159 sell: 96 elect: 32 pressure: 51 scoff: 14
post: 154 decline: 90 hang: 31 explain: 41 live: 11
lead: 153 drop: 89 pressure: 24 peg: 39 send: 11

… … … … …

unnerve: 1 exhale: 1 wear: 1 want: 1 withdraw: 1

Construction

Property A1 V into A2 A1 V with a2 A1 V for A2 A1 V against A2 A1 V of A2

Verb tokens in input 9 7 3 1 1
Verb types in input 6 5 2 1 1
Verb types produced 206 106 77 20 21
Avg. verb types produced 24.0 10.4 6.0 2.6 2.4
Verb types with their production frequencies buy: 107 join: 174 search: 164 lean: 174 disapprove: 154

run: 88 cooperate: 141 scream: 135 groan: 17 scoff: 14
sell: 78 merge: 138 sit: 43 scoff: 16 sit: 14
eat: 69 respond: 134 scoff: 20 sit: 13 groan: 11
erupt: 68 sit: 118 obtain: 19 gaze: 7 gaze: 7
pack: 64 scoff: 23 glance: 17 live: 6 live: 7
turn: 63 glance: 21 groan: 17 rely: 5 squint: 7

acquire: 62 groan: 19 gaze: 8 listen: 4 rely: 5
hold: 51 scream: 18 live: 8 squint: 4 glance: 4
want: 50 gaze: 16 rely: 6 glance: 3 listen: 4

… … … … …
thrill: 1 write: 1 steal: 1 shout: 1 spout: 1

Note: Verbs in bold italic are unattested with target construction in input.
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but these would not be immediately obvious from verb
lists or correlation tables. Although comparing L1 to L2
simulations was not our goal in this study, to further
demonstrate that our model performed as expected on
the simulated task, we quantified the differences
between the verbs produced in L1 and L2 simulations,
to compare these differences to what Römer, O’Donnell,
and Ellis (2014) report. We adopted an approach similar
to theirs and ran a mixed-effects regression analysis pre-
dicting the frequencies of verbs produced in L2 simu-
lations from those in L1 simulations, with the random
slope over individual constructions. The model fit was
reasonable (marginal R2 = .57, conditional R2 = .656),
and the β-coefficient reflecting the correlation between
the produced verb frequencies in L1 and L2 simulations

was equal to 0.71, which is rather close to the average
value of 0.75 reported by Römer et al. (2014) for native
English vs. native German speakers.

Next, we proceed with reporting on the combined
regression analysis of the L2 simulation data set.
Table 5 (c) and 5 (d) summarises the regression results
for the simulated L2 production data. Overall, the
results are similar to those for L1, and to those of EOR.
Note that the values of the three target variables, follow-
ing EOR’s study, were computed for English construc-
tions only. For the same reason, although the model
produced some German verbs in the test task, these
verbs were excluded from our analysis. However, the
input to the model consisted of both English and
German constructions, many of which are shared by
the two languages. Since our model treated L1 German
and L2 English instances in exactly the same way, it
could be fairer to compute the values of F(v, c),
DPA(v, c), and Prt(v, c) for the whole data set, assuming
that each construction may be associated with both
English and German verbs. This is why we ran an
additional analysis, in which all the produced German
verbs were kept during the analysis, and the values of
the three variables were computed for the whole bilin-
gual data set. Again, the results were very similar to the
ones reported above.

Table 4. Summary of correlation tests between Pf(v,c) and each
of the three factors for individual constructions in L1 replication
data.

F(v, c) DPA(v, c) Prt(v, c)
Construction r p r p r p

A1 V .96 <.001 .17 .002 .05 .372
A1 V A2 .94 <.001 .13 .020 .08 .162
A1 V A2 A3 .44 <.001 .22 <.001 .11 .044
A1 V A2 about A3 .18 .001 .18 .001 .21 <.001
A1 V A2 above A3 .21 <.001 .21 <.001 .14 .011
A1 V A2 across A3 .33 <.001 .33 <.001 .22 <.001
A1 V A2 among A3 .19 .001 .19 .001 .03 .622
A1 V A2 as A3 .43 <.001 .42 <.001 .13 .020
A1 V A2 at A3 .43 <.001 .28 <.001 .17 .003
A1 V A2 by A3 .28 <.001 .28 <.001 .13 .023
A1 V A2 for A3 .43 <.001 .43 <.001 .12 .029
A1 V A2 from A3 .36 <.001 .31 <.001 .18 .001
A1 V A2 in A3 .35 <.001 .34 <.001 .21 <.001
A1 V A2 into A3 .30 <.001 .30 <.001 .09 .125
A1 V A2 of A3 .22 <.001 .21 <.001 .12 .034
A1 V A2 on A3 .46 <.001 .33 <.001 .15 .006
A1 V A2 over A3 .42 <.001 .42 <.001 .15 .008
A1 V A2 through A3 .27 <.001 .27 <.001 .20 <.001
A1 V A2 to A3 .61 <.001 .39 <.001 .19 .001
A1 V A2 under A3 .16 .003 .16 .003 .21 <.001
A1 V A2 until A3 .32 <.001 .32 <.001 .14 .011
A1 V A2 with A3 .49 <.001 .46 <.001 .10 .062
A1 V about A2∗ .27 <.001 .22 <.001 .02 .663
A1 V against A2∗ .36 <.001 .36 <.001 −.01 .875
A1 V at A2 .31 <.001 .29 <.001 .02 .692
A1 V below A2 .13 .020 .13 .020 .13 .021
A1 V by A2 .29 <.001 .23 <.001 .02 .779
A1 V for A2∗ .65 <.001 .63 <.001 −.12 .294
A1 V from A2 .13 .022 .13 .022 −.09 .095
A1 V from A2 A3 .56 <.001 .56 <.001 .10 .086
A1 V in A2 .25 <.001 .17 .002 −.04 .468
A1 V into A2∗ .21 <.001 .17 .002 −.07 .220
A1 V of A2∗ .35 <.001 .35 <.001 .08 .133
A1 V on A2 .40 <.001 .31 <.001 .12 .037
A1 V on A2 A3 .23 <.001 .23 <.001 .20 <.001
A1 V to A2 .15 .009 .13 .020 .01 .828
A1 V to A2 A3 .23 <.001 .23 <.001 .16 .003
A1 V to A2 about A3 .48 <.001 .48 <.001 .09 .101
A1 V to A2 of A3 .49 <.001 .49 <.001 .09 .094
A1 V up A2 .09 .107 .09 .107 .19 .001
A1 V upon A2 .23 <.001 .23 <.001 .06 .255
A1 V with A2∗ .36 <.001 .32 <.001 −.06 .285
A1 V with A2 in A3 .26 <.001 .26 <.001 .07 .216
A1 V with A2 on A3 .44 <.001 .44 <.001 .17 .002
∗Constructions present in EOR’s data.

Table 5. Summary of the multiple regression models fitted to the
L1 replication data.
Variable β SE p LMGa VIF

(a) L1 simulations: constructions present in EOR’s data set, PF � F + DP + Prt
F(v, c) 0.69 0.03 < .001 .59 2.75
DPA(v, c) 0.25 0.03 < .001 .40 2.74
Prt(v, c) 0.05 0.02 .008 .01 1.02
Multiple R2 = .83, adjusted R2 = .82

Variable β SE p LMG VIF

(b) L1 simulations: all constructions, PF � F + DP + Prt
F(v, c) 0.57 0.01 < .001 .73 1.13
DPA(v, c) 0.25 0.01 < .001 .25 1.14
Prt(v, c) 0.06 0.01 < .001 .02 1.02
Multiple R2 = .50, adjusted R2 = .50

Variable β SE p LMG VIF

(c) L2 simulations: constructions present in EOR’s data set, PF � F + DP + Prt
F(v, c) 0.70 0.02 < .001 .57 2.73
DPA(v, c) 0.29 0.02 < .001 .41 2.73
Prt(v, c) 0.05 0.01 .002 .02 1.02
Multiple R2 = .90, adjusted R2 = .90

Variable β SE p LMG VIF

(d) L2 simulations: all constructions, PF � F + DP + Prt
F(v, c) 0.59 0.01 < .001 .75 1.12
DPA(v, c) 0.24 0.01 < .001 .23 1.14
Prt(v, c) 0.06 0.01 < .001 .02 1.03
Multiple R2 = .51, adjusted R2 = .51
aThis measure is used in EOR’s studies: it computes the importance of each
predictor relative to the other predictors by analysing how the regression
coefficients change when various combinations of predictors are excluded
from the model. The measure was proposed by Lindeman, Merenda, and
Gold (1980) and implemented in R by Grömping (2006).
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Interim discussion
To summarise, the model performs as expected on the
target task: verbs which appear in a construction in the
input tend to populate the top of the respective list of
produced verbs for this construction. Since there are
six constructions present both in this study and in
EOR’s study, we would ideally compare the verbs pro-
duced by the model and by human participants. Yet, in
our input data set these constructions occur with only
1–6 verb types, and the model tends to produce these
verbs first. In contrast, naturalistic language input to
human participants is more varied: each construction
occurs with a greater variety of verb types, and EOR’s par-
ticipants are not as limited in their verb choice as the
model is. Besides, the distribution in the input per con-
struction differs across the two studies: human partici-
pants are mostly exposed to colloquial language, while
our input data set is based on business newspaper
texts from the Penn Treebank (WSJ part). This is reflected
in verb selection: human participants tend to produce
colloquial verbs (e.g. go, be, dance with … ), while the
model often prefers specialised verbs ( join, cooperate,
merge with … ), although in both cases verbs produced
first tend to be the most frequent ones in the respective
input data set.

Given the low number of verb types in some preposi-
tional constructions, the model generalises and produces
verbs unattested in these constructions, marked with bold
italic in Table 3. These verbs mostly appear at the bottom
of the list for each construction, with a few exceptions,
such as A1 elect A2 A3, A1 disclose A2 to A3, and A1 sell
into A2. Although these usages may not be the most
common ones, they are not ungrammatical either, and
could easily appear in a larger language sample: e.g.
they elected him president; he … discloses it to others;
rivals … sell into that market (examples taken from the
BNC). This suggests that our model is able to find reason-
able generalisations using the input. At the same time,
some occasionally produced verbs are ungrammatical,
such as A1 send about A2, A1 listen of A2, etc. This
happens because the model’s exposure to the target con-
struction is limited in terms of participating verb types,
and there may not be enough support for making
correct generalisations. Besides, as we argue below in
this section, verb semantic representations in the input
data are not rich enough. This is why the model overge-
neralises and produces such ungrammatical usages.
However, as we mentioned, the ungrammatical usages
tend to appear at the bottom of the list, and do not com-
promise the model’s performance on the verb production
task. Besides, the difference between the frequencies of
verb production in L1 and L2 simulations is very close to
the value reported by Römer et al. (2014), which further

defends the performance of our model on this task. Never-
theless, the fact that we could not compare the model’s
performance to human data in terms of specific verbs
leaves the possibility that the model does not perform
exactly like humans in the target task.

As for the correlations and the combined regression
analysis, the frequency of production of verbs in our
simulations can be predicted by joint verb–construction
frequency, DP-contingency, and to some extent by verb
semantic prototypicality. However, prototypicality does
not correlate with the production frequency in all con-
structions, and its contribution to predicting production
frequency is smaller than in EOR’s studies. We propose
three possible explanations of this result.

The first explanation is that our computational model
does not rely on this factor to the extent human speakers
do when generating verbs in constructions. This, indeed,
may be the case, because the predicate semantics is only
one out of many features in our representation of verb
usages (recall Table 2). In other words, our model may
underestimate the importance of the verb meaning in
learning argument structure constructions. Note,
however, that EOR in one of their studies (Ellis et al.,
2014b) also did not observe significant correlations
between the production frequency and semantic proto-
typicality for 5 out of 17 constructions in the data
obtained from L1 English as well as L1 German speakers.
In our simulations, prototypicality was correlated with
the production frequency in 23 out of 44 constructions,
and it had an independent contribution in all the
regression models reported above.

The second explanation relates to the type of seman-
tic representations that the model operates on. Human
speakers are often believed to possess fine-grained
semantic representations of verbs: for example, Pinker
(2013) proposes such narrow semantic rules as “transfer
of possession mediated by separation in time and space”
(p. 129). In contrast, semantic representations in our data
set are extracted from WordNet and VerbNet and are
more simplistic than that (e.g. give: {POSSESSION, TRANSFER,
CAUSE}). This is not critical for the simulated learning
process, because the discrimination between different
verbs is supported by other features in the data, such
as arguments’ thematic proto-roles. However, in our
analysis the prototypicality values are computed based
on the verb semantics only, and the impoverished
semantic representations may lead to the lower impact
of semantic prototypicality in our study.

Our final explanation relates to how the prototypical-
ity measure operates on a large and dense (as in EOR’s
study) vs. a small and sparse data set (as in our study).
EOR computed semantic prototypicality of a verb in a
construction based on a rich semantic network of all
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verbs that appear in this construction in the BNC. BNC is a
rather large source, and it is unlikely that EOR’s partici-
pants, given a construction, would produce a verb
which is unattested in this construction in the BNC. In
contrast, some constructions in our data set appeared
with only a few verb types, in which case the prototypi-
cality values were computed based on a rather small set
of these few verbs. Yet the model often produced verbs
which were unattested in this construction (non-
members), but were semantically similar to other verbs
that did appear in the target construction (members).
To give an example, a construction ARG1 VERB ARG2 for
ARG3 appeared in our data set with only five verbs: substi-
tute, elect, hail, criticise, and remove. In the production
task, the model generated these five verbs rather fre-
quently, but there were other frequent verbs, in particu-
lar praise, chastise, and indict. Clearly, these verbs are
allowed in the target construction, partly because they
are somewhat synonymic to the construction members,
at least when used in the target context (to VERB

someone for a reason): chastise and indict are similar to
criticise, while praise is similar to hail. In fact, the non-
members must have been included into the target set
of verbs, and the semantic prototypicality of all the
verbs must have been calculated on this extended set.
Since we had no way to predict beforehand which
verbs would be produced by the model (and thus,
should be included into the set), we computed all proto-
typicality values on the smaller set of verbs. This was par-
ticularly the case for the six constructions shared
between our data set and EOR’s data set: recall that
these constructions appeared in the input with only a
few verb types. As a result, prototypicality values for
such constructions might not be very objective, hence
the rather low contribution of this variable to predicting
the frequency of verb production. At the same time, the
correlation between prototypicality and production fre-
quency is also very small for some frequent construc-
tions, such as ARG1 VERB ARG2 and ARG1 VERB (at the top
of Table 4), which cannot be explained by the account
outlined above. We believe this has to do with the inco-
herence of semantic networks for such constructions,
and we leave this issue for the final discussion.

The small effect of semantic prototypicality in data
simulated by our model should be addressed in the
future; for now it is important to keep in mind that the
reported impact of semantic prototypicality in the
current study may be underestimated. Apart from the
described limitation, our model was able to replicate
the main effects reported in the original studies, both
for L1 and L2. In the next section, we address the two
methodological issues of the original study discussed
earlier (see Methodological issues above).

Addressing the methodological issues: Individual
variation

In this second analysis, we take into account the individ-
ual variation in the linguistic input, while trying to keep
the rest of the design as close as possible to the previous
analysis. We use the same set of simulated learners
described in the previous section to predict verb pro-
duction by the three target variables. The differences
from the previous analysis are described next.

Methodological details
This time we do not calculate the cumulative frequency of
production of each verb in a specific construction, PF(v, c),
as we did earlier. Instead, for each verb produced by each
simulated learner we define a binary outcome variable,
which is set to 1 if the probability of production of this
verb equals at least .005 (the threshold value from the pre-
vious analysis), and to 0 otherwise. This way, we now do
not combine the data from all learners into a single
PF(v, c) value, but instead have data from individual simu-
lated learners, while keeping the rest of the design very
close to what was reported in the previous section.
Besides, we compute the values of the three target vari-
ables – F(v, c), DPA(v, c), and Prt(v, c) – for each simu-
lation individually, based on a specific input sample. To
keep up with the previous analysis, we apply the same
data transformations as described before. To account for
potential individual variation between constructions and
learners, we use logistic mixed-effects models with the
binary outcome variable described above, with F(v, c),
DPA(v, c), and Prt(v, c) as fixed factors, and with construc-
tions and learners as random factors. All the mixed-effects
models for both L1 and L2 simulated data were fit to the
two data sets: EOR’s constructions only, and the whole
data set, just as in the previous section. We started from
maximal random effect structure with the random inter-
cept and three random slopes (for each predictor);
however, the maximal model only converged for EOR’s
subset of L2 simulated data; therefore, we removed
some random slopes.

Results
The results are provided in Table 6. We did not use the
LMG relative importance measure from the previous
analysis, because it could not be applied to mixed-
effects models. In this set of models, the β-coefficients
for DPA(v, c) are generally small (0.02 to 0.08), with the
exception of model fitted to EOR’s constructions in L1
simulations (DPA(v, c) = 0.26). However, even in the
latter case the respective SE value is rather high (0.18),
suggesting high variation in the data regarding the
effect of DPA(v, c). Besides, there is substantial variability
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among the coefficients for Prt(v, c): between −0.08 and
0.38. The coefficients are greater in the models fitted to
all constructions (0.38 and 0.37), compared to the
models fitted to EOR’s constructions only (0.10 and
−0.08). Note that, surprisingly, in the latter case this coef-
ficient has a negative value; however, the respective vari-
ation in the data is high again (SE = 0.09). Besides, the
respective model (fitted to EOR’s constructions in L2
simulations) is the only one which includes random
slopes for Prt(v, c) over individual constructions and indi-
vidual learners (see Table 6(c)), suggesting that some of
this variation may come from accounting for the individ-
ual variation in the data.

Interim discussion
The models reported above predict verb production
while taking into account differences in individual lin-
guistic experiences of simulated learners. By comparing
this kind of analysis to the original one, we can investi-
gate whether taking into account individual variation
may potentially lead to different results. Although our
goal was to keep the data and the analysis maximally
consistent with the previous set-up, there are still differ-
ences in the type of outcome variable used (numeric pro-
duction frequency vs. binary outcome) and, as a result, in
the type of models fitted to the data (linear vs. logistic
regression). This does not allow us to compare coeffi-
cients pairwise across the two types of analysis;
however, the general pattern of difference suggests
that the effect of DP-contingency may not be as high
as predicted earlier, as soon as individual variation is
taken into account.

The results on the individual variation in terms of
semantic prototypicality are somewhat inconclusive.
On the one hand, the positive effect of semantic prototy-
picality is present in the new models fitted to the full
data sets, in both L1 and L2 simulations, and in the
new model fitted to EOR’s constructions in L1 simu-
lations. On the other hand, there is not enough evidence
for such effect in EOR’s constructions obtained from L2
simulations. This must relate to whether the respective
prediction model accounts for the variation between
individual learners regarding this factor: we fitted an
additional model to the same data, this time without
the random slope for prototypicality over individual lear-
ners, and this model did predict a positive effect of
semantic prototypicality. In other words, our data
suggest that semantic prototypicality may play a role
for some learners, but not for others.

Addressing the methodological issues: order of
preference

In the third set of analyses, we look into the order of verb
production by the same simulated learners, trying again
to keep the rest of the design as close as possible to the
original procedure.

Methodological details
In this set of analyses, we record the actual probability of
production of each verb by each simulated learner in
each construction and then compute the cumulative
probability, PP(v, c), using it as the outcome variable in
regression, instead of cumulative frequency. Cumulative

Table 6. Summary of the mixed-effects models accounting for individual language experience.
Variable β SEa 95%CIa VIF

(a) L1 simulations: constructions present in EOR’s data set, Prod. � F + DP + Prt+ (1+ DP | learner) + (1+ DP | constr.)
F(v, c) 0.58 0.01 [0.56, 0.60] 1.03
DPA(v, c) 0.26 0.18 [−0.09, 0.61] 1.00
Prt(v, c) 0.10 0.02 [0.06, 0.13] 1.03

Variable β SE 95%CI VIF

(b) L1 simulations: all constructions, Prod. � F + DP + Prt+ (1 | learner) + (1 | constr.)
F(v, c) 0.89 0.00 [0.88, 0.90] 1.95
DPA(v, c) 0.02 0.00 [0.01, 0.02] 2.01
Prt(v, c) 0.38 0.01 [0.36, 0.39] 1.07

Variable β SE 95%CI VIF

(c) L2 simulations: constructions present in EOR’s data set, Prod. � F + DP + Prt+ (1+ F + DP + Prt | learner) + (1+ F + DP + Prt | constr.)
F(v, c) 0.75 0.06 [0.62, 0.87] 1.32
DPA(v, c) 0.08 0.06 [−0.04, 0.20] 1.41
Prt(v, c) −0.08 0.09 [−0.26, 0.09] 1.09

Variable β SE 95%CI VIF

(d) L2 simulations: all constructions, Prod. � F + DP + Prt+ (1 | learner) + (1 | constr.)
F(v, c) 0.89 0.01 [0.88, 0.90] 1.42
DPA(v, c) 0.05 0.00 [0.04, 0.06] 1.50
Prt(v, c) 0.37 0.01 [0.35, 0.39] 1.07
aDue to the large sizes of the data sets, the reported SE and CI values for all the models are approximate, based on the Wald tests (Bates et al., 2015).
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frequency of a verb only shows how many times it is pro-
duced overall, while cumulative probability preserves the
order of verb production by adding up the actual values
of verb production probability for each learner. Unlike in
the previous section, we are not interested in the vari-
ation between learners’ individual experiences; there-
fore, we use the values of F(v, c), DPA(v, c), and
Prt(v, c) computed for the overall data set, to keep this
analysis as close as possible to the original one. Again,
we use the threshold value of .005 and apply the same
data transformations as before. To account for the vari-
ation between constructions, we use linear mixed-
effects models with PP(v, c) as the outcome variable,
with F(v, c), DPA(v, c), and Prt(v, c) as fixed factors, and
with the random intercept and three random slopes
(for each predictor) over individual constructions. One
random slope has been removed from one final model
to ensure its convergence. The rest of the analysis
follows the originally outlined procedure.

Results
The summaries of the prediction models are provided in
Table 7. Just as in the previous set of analyses, we can see
that the effect of DP-contingency is small (the greatest β-
coefficient is 0.03), and even negative (−0.04) for one of
the models. Besides, in all cases the respective 95%CI
includes 0, suggesting that the contributions of DP-con-
tingency are not significant in these models.

In other respects this new set of models is similar to
the original analysis. The other two factors, joint fre-
quency F(v, c) and prototypicality Prt(v, c), have their
independent contributions, although in one case the
95%CI for prototypicality includes 0. The overall fit of
the models to the data is lower than reported in our
first analysis: they explain 34–66% of the variance in
the data (see R2c values in the table), and only 28–47%
of this is explained by the fixed factors (R2m values): to
compare, the overall fit of the models in the original
analysis varies between 50% and 90%.7

Interim discussion
The models reported above predict the cumulative prob-
ability of verb production by the simulated learners.
Unlike the originally reported models (see Simulating the
original experiments), this type of analysis accounts for
the order of verb preference by our simulated L1 and L2
learners. Most importantly, none of the four models
suggest that DPA(v, c) is an independent predictor,
when the order of verb production is taken into
account. Recall that both joint frequency and DP-contin-
gency are measures of the contextual frequency: this
may explain why we do not observe the independent
effects of both measures at the same time. Indeed, the
approximate correlation coefficient between βs for joint
frequency and DP-contingency (this coefficient is not
included into the tables) appears to be rather large,
between −0.50 and −0.74. In other words, the higher

Table 7. Summary of the mixed-effects models accounting for the order of verb preference.
Variable β SEa 95%CIa VIF

(a) L1 simulations: constructions present in EOR’s data set, PP � F + DP + Prt+ (1+ F + DP + Prt | constr.)
F(v, c) 0.56 0.08 [0.41, 0.72] 1.74
DPA(v, c) −0.04 0.09 [−0.21, 0.13] 1.70
Prt(v, c) 0.06 0.05 [−0.03, 0.15] 1.39
R2m = .28, R2c = .34b

Variable β SE 95%CI VIF

(b) L1 simulations: all constructions, PP � F + DP + Prt+ (1+ F + DP + Prt | constr.)
F(v, c) 0.84 0.04 [0.77, 0.93] 1.86
DPA(v, c) 0.03 0.02 [−0.01, 0.07] 1.96
Prt(v, c) 0.14 0.02 [0.10, 0.18] 1.09
R2m = .47, R2c = .64

Variable β SE 95%CI VIF

(c) L2 simulations: constructions present in EOR’s data set, PP � F + DP + Prt+ (1+ F + DP | constr.)
F(v, c) 0.53 0.08 [0.37, 0.68] 1.64
DPA(v, c) 0.02 0.08 [−0.13, 0.18] 1.63
Prt(v, c) 0.14 0.04 [0.06, 0.22] 1.02
R2m = .32, R2c = .37

Variable β SE 95%CI VIF

(d) L2 simulations: all constructions, PP � F + DP + Prt+ (1+ F + DP + Prt | constr.)
F(v, c) 0.85 0.05 [0.75, 0.95] 2.20
DPA(v, c) 0.03 0.02 [−0.01, 0.08] 2.25
Prt(v, c) 0.14 0.02 [0.10, 0.17] 1.05
R2m = .47, R2c = .66
aThe reported SE and CI values are estimated via parametric bootstrap with 1000 resamples (Bates et al., 2015).
bR2m and R2c stand for marginal and conditional R2 coefficients.
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the β for frequency, the lower the β for DP-contingency,
and vice versa.

The poorer fits of the models support our idea that
there is space for refining the original prediction model
used so far in the analyses: another set of variables may
explain the data better without predicting so much
random variation between constructions. We will investi-
gate this issue in the next section.

Refining the prediction model

Our next goal is to test whether there is a better set of
predictors explaining the production data. Based on our
theoretical overview, we have three issues to address.
First, theoretical accounts suggest that the marginal
verb frequency may play an independent role in verb
selection; therefore, we believe that including marginal
frequency into the prediction model would improve its
fit to the data. Second, the presence of two contextual
frequency (association) measures in the model may not
be well justified, and eliminating one of them might
not necessarily damage the model. Finally, there are mul-
tiple measures of contextual frequency, three of which
we plan to test: joint frequency, DP (as in the previous
analyses), and Attraction.

Methodological details
We start by fitting a number of mixed-effects models of
the type described in the second analysis (logistic
models taking into account individual differences) and
in the third analysis (linear models taking into account
order of preference). To ensure that the models general-
ise well over different constructions, we use the full set of
constructions for fitting each model, and not EOR’s
subset. The structure of fixed factors in the models is
defined as described below.

I II III

m1a Production � joint freq.× DP−assoc. × protot−ty

m2a Production � joint freq.× attraction × protot−ty

m3a Production � attraction× DP−assoc. × protot−ty

m4a Production � joint freq. × protot−ty

m5a Production � attraction × protot−ty

m6a Production � DP−assoc. × protot−ty

m1b Production � verb freq. × joint freq.× DP−assoc. × protot−ty

m2b Production � verb freq. × joint freq.× attraction × protot−ty

m3b Production � verb freq. × attraction× DP−assoc. × protot−ty

m4b Production � verb freq. × joint freq. × protot−ty

m5b Production � verb freq. × attraction × protot−ty

m6b Production � verb freq. × DP−assoc. × protot−ty

In all the equations above, component I represents the
marginal verb frequency, component II comprises con-
textual frequency measures, and component III is the
semantic prototypicality. We start with the original
model tested in the previous sections, m1a. Models
m2a–m3a resemble m1a, but they test alternative pairs
of the three contextual frequency measures. Models
m4a–m6a, in contrast, eliminate one of the contextual
frequency measures, keeping only one. Finally, the
other six models (m1b–m6b) mirror models m1a–m6a,
respectively, but add the marginal frequency measure
to their counterparts. Note that the models are multipli-
cative due to the log-transformation of all the variables:
log(y) = log(a) + log(b) + log(c) ⇒ y = abc. Studying
and interpreting interactions between variables in such
models are not straightforward, and for simplicity we
do not include any interaction terms in the prediction
models.

We compare the fit of all the 12 models using their cor-
rected Akaike information criterion (AICc), as
implemented in R (Bolker and R Development Core
Team, 2016). This is a common method to compare
models in a multimodel inference paradigm (Burnham
& Anderson, 2002).8

Results: model comparison
The ranked list of the models with their respective AICc
values is provided in Table 8, which is also visualised in
Figure 4.

First, we have to note that models m2a–m3a and
m2b–m3b in some cases yielded multicollinearity pro-
blems. This was caused by the presence of two contextual
frequency measures in these models, which sometimes
were highly correlated even after applying the data trans-
formations. The models which show this problem, even if
ranked rather high, may not be very informative in terms
of their coefficients. Furthermore, we notice that the
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order of the models in the four lists is not identical,
although there are clear similarities. The original model
m1a is far from being the best one in any list. A pairwise
comparison of the models demonstrates that m1b–m6b,
which include the marginal verb frequency F(v), always
fit the data better than their respective counterparts
without F(v): m1a–m6a. In other words, adding F(v) to
any model improves its fit. If we further look only at
the ranks of the “better” models m1b–m6b, we can see
that the models with two contextual frequency measures
(m1b–m3b) generally outperform the models with only
one such measure (m4b–m6b). The only exception
from this pattern is the single-measure model m4b,
which is ranked third in each list, always higher than
m3b. In all the four lists, the best model is m2b; therefore,

we look at this model in more detail in the following
section.

Predictive power of each factor
To look at the impact of individual predictors in the
refined model, in Table 9, we provide the summary of
the model m2b ranked highest in each list. To account
for the random variance, we refit m2b to each data set,
this time including random slopes for each predictor
(linear models accounting for order of preference), or
random intercepts (logistic models accounting for indi-
vidual variation).

Looking at the summary in Table 9, we first observe
that the four fixed factors in the linear models explain
52% of the variance for L1 data, and 53% for L2 data

Figure 4. Model rankings visualised. DAICc for a model M in each subplot shows the difference between the AICc of the best model in
that subplot and the AICc of the model M. DAICc of the best model in each subplot is 0, and higher AICc values correspond to worse
model fits.

Table 8. Model rankings.
L1 data L2 data

Individual differences Order of preference Individual differences Order of preference

Rank Model DAICc Model DAICc Model DAICc Model DAICc

1 m2b 0 m2b∗ 0 m2b 0 m2b* 0
2 m1b 2601 m1b 20 m1b 1893 m1b 21
3 m4b 5842 m4b 39 m4b 5236 m4b 41
4 m2a 9867 m3b* 57 m2a 5810 m3b* 66
5 m1a 13,892 m5b 131 m1a 8282 m5b 135
6 m4a 16,539 m6b 614 m4a 11,475 m6b 579
7 m3a* 23,403 m2a* 846 m3b* 19,627 m2a* 749
8 m5b 34,996 m1a 855 m5a 29,330 m1a 760
9 m3a* 36,100 m4a 858 m3* 30,887 m4a 762
10 m5a 55,234 m3a* 921 m5a 43,980 m3a* 833
11 m6b 64,844 m5a 1023 m6b 53,950 m5a 932
12 m6a 93,828 m6a 1496 m6a 72,918 m6a 1363
∗Models which showed multicollinearity problems (VIF>3 for some predictors).
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(see R2m coefficients). This is higher compared to the orig-
inal prediction models for the same data sets (47%, see
section Addressing the methodological issues: Order of
preference).

Next, we can see that all the models yield collinearity
problems: the variance inflation factor for A(v, c) and
F(v, c) varies between 5.14 and 6.79. This suggests high
collinearity between the two predictors. This is sup-
ported by the high correlation between βs for A(v, c)
and F(v, c) in all models, varying between −0.89 and
−0.91. Considering that the random slopes for A(v, c)
and F(v, c) could not be included into the logistic
models, the random variation in these models may be
underestimated. In sum, even though A(v, c) and
F(v, c) demonstrate their independent effects in the
two logistic models, the respective β-coefficients may
not be very informative.

The coefficients for Prt(v, c) in linear models are also
rather small, 0.10 and 0.08. Most importantly, the effect
of F(v) is high in all the models.

Interim discussion
The comparison of prediction models supports our pro-
posal that the marginal verb frequency plays an indepen-
dent role in predicting verb production in our simulated
data. The parallel use of two contextual frequency
measures appears to improve the model fit overall, con-
trary to our expectations. Yet, including two contextual

frequency measures leads to collinearity issues: there is
often a trade-off between the overall fit of the model
to the data and the informativeness of its β coefficients.
The use of a single measure is supported by our analysis
of individual predictors, which suggests that the contex-
tual frequency can be considered as a single component:
joint frequency and Attraction capture the same type of
syntagmatic relation between verbs and constructions.
In other words, it is the combined effect of contextual
frequency which is important, but not the individual
effect sizes of joint frequency and Attraction. If one
needs to chose a single contextual frequency measure
between joint frequency, Attraction, and DP-contin-
gency, our analysis suggests that joint frequency is the
best measure: recall the high ranks of model m4b.

Considering contextual frequency as a single com-
ponent, its individual impact in all the models is the
highest, compared to the other predictors. The impact
of prototypicality appears to be rather small in some
refined models, but so it is in the original models as
well: again, recall that our computational model may
underestimate the importance of this factor.

General discussion

In this study, we examined whether the selection of
verbs within constructions could be explained by the dis-
tributional and semantic properties of these verbs and

Table 9. Summary of the best models of m2b type.
Variable β SEa 95%CIa VIF

(a) L1 simulations: model accounting for individual differences, Prod. � F(v) + F(v, c) + A+ Prt+ (1 | learner) + (1 | constr.)
F(v) 0.64 0.01 [0.63, 0.66] 1.03
F(v, c) 0.65 0.01 [0.64, 0.67] 6.48
A(v, c) 0.11 0.00 [0.10, 0.11] 6.54
Prt(v, c) 0.33 0.01 [0.31, 0.35] 1.07

Variable β SEb 95%CIb VIF

(b) L1 simulations: model accounting for order of preference, PP � F(v) + F(v, c) + A+ Prt+ (1+ F(v) + F(v, c) + A+ Prt | constr.)
F(v) 0.29 0.04 [0.21, 0.37] 1.36
F(v, c) 0.73 0.10 [0.53, 0.92] 5.14
A(v, c) 0.07 0.05 [−0.02, 0.17] 5.78
Prt(v, c) 0.10 0.02 [0.06, 0.14] 1.14
R2m = .52, R2c = .72

Variable β SEa 95%CIa VIF

(c) L2 simulations: model accounting for individual differences, Prod. � F(v) + F(v, c) + A+ Prt+ (1 | learner) + (1 | constr.)
F(v) 0.63 0.01 [0.62, 0.66] 1.06
F(v, c) 0.60 0.01 [0.58, 0.62] 6.29
A(v, c) 0.16 0.01 [0.15, 0.17] 6.31
Prt(v, c) 0.33 0.01 [0.32, 0.35] 1.07

Variable β SEb 95%CIb VIF

(d) L2 simulations: model accounting for order of preference, PP � F(v) + F(v, c) + A+ Prt+ (1+ F(v) + F(v, c) + A+ Prt | constr.)
F(v) 0.30 0.04 [0.22, 0.38] 1.45
F(v, c) 0.77 0.11 [0.55, 1.00] 6.18
A(v, c) 0.06 0.05 [−0.05, 0.16] 6.79
Prt(v, c) 0.08 0.02 [0.05, 0.12] 1.13
R2m = .53, R2c = .75
aValues are based on the Wald tests.
bValues are estimated via parametric bootstrap with 1000 resamples.
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constructions, to see which factors may be responsible
for establishing links between verbs and constructions
in speakers’minds. We started from adopting the propo-
sal by EOR that the frequency of production of a verb in a
construction can be predicted by the joint verb–con-
struction frequency, the contingency of verb–construc-
tion mapping, and the prototypicality of the verb
meaning. In what follows, we first briefly recapitulate
how our simulations are similar and dissimilar to the
human data. Since semantic prototypicality is the main
issue in this respect, we discuss it next. The discussion
is continued with a comparison of the results across
three types of analysis provided above. Next we
explain how the prediction model can be improved by
avoiding multiple measures of contextual frequency,
and by including marginal frequency instead. Addition-
ally, we discuss how the use of form-based represen-
tations of constructions may have affected the findings,
and address other theoretical challenges. Finally, we
briefly talk about the computational model used in this
study, and provide a short conclusion.

Simulations vs. human data

We used a computational model of construction learning
to simulate the verb production experiments from EOR’s
studies. The analysis of verbs produced in the compu-
tational simulations demonstrated the model’s reason-
able performance on the target task: given a
construction, the model mostly produced verbs that
had been attested in this construction in the input.
There were some exceptions, which suggest that the
model was able to perform sensible generalisations
over individual verb usages. At the same time, the type
of the input data used in this study made it impossible
to directly compare the verbs produced by the model
to those produced by human participants, suggesting
that we can not claim that the model exactly replicated
human linguistic behaviour in the target task.

Our initial correlational and regression analyses
showed main effects similar to those in the original
experiments of EOR. In particular, we observed indepen-
dent contributions of all the three predictors to explain-
ing the frequency of verb production. Additionally, a
preliminary comparison of the verb lists produced by
the model in L1 vs. L2 simulations demonstrated that
the degree of difference between the two lists was
similar to that reported by Römer et al. (2014) for
native German vs. native English speakers. However, a
qualitative comparison between the simulated L1 and
L2 verb lists is still needed. The main difference
between the results obtained in our simulations and
those reported by EOR related to the effect of semantic

prototypicality, which appeared to be lower in our simu-
lated data. We discuss this issue next.

Meaning prototypicality, data sparsity, and
semantic coherence

We proposed three possible explanations for the low
impact of semantic prototypicality: (1) the role of verb
semantics is underestimated in the learning algorithm
used by our model; (2) verb semantic representations
in our data sets are impoverished compared to those
in human speakers; and (3) our semantic prototypicality
measure performs poorly on infrequent constructions
due to the data sparsity. Regarding the last explanation,
we also found that the correlations between semantic
prototypicality and verb production frequency were
also low within some frequent constructions in our
data set, for which dense information on verb use was
available: ARG1 VERB and ARG1 VERB ARG2. We suggest this
has to do with the degree of semantic coherence of a
construction. Following the set-up of the original
studies, we have used highly abstract constructions
defined by their shallow form, which may not be seman-
tically coherent. In particular, if we look at the verbs pro-
duced within the most frequent construction ARG1 VERB

ARG2, these comprise several semantic groups: verbs of
mental state (e.g. want), verbs of transfer (e.g. buy, sell),
verbs of communication (e.g. announce), and many
others. Given this variety, the construction is unlikely to
have a single semantic core surrounded by multiple per-
ipheral verbs. Instead, there are multiple semantic
centres, and a single measure of semantic prototypicality
may not capture such organisation well, in particular
when some semantic verb classes within a construction
are much richer than others. This might be why we do
not observe an effect of prototypicality in such construc-
tions. In contrast, the effect is larger in constructions
whose semantics is more coherent, because they actually
have a single “prototypical” core. To give an example, the
ARG1 VERB ARG2 ARG3 construction in our data (which com-
prises ditransitive verb usages, but also allows for adver-
bial arguments) is represented by eight verbs: drag, give,
hang, lead, place, pull, send, and tell. Most of these are
physical action verbs, the only exception being tell,
hence high semantic coherence and a high effect of
semantic prototypicality.

To compare, Theakston et al. (2004) in their study of
early verb use did not find enough support that semantic
prototypicality of a verb could predict the age when this
verb first appeared in the child’s speech, and the con-
structions they used – SVO, VO, and the intransitive –
were highly abstract, and thus unlikely to be semantically
coherent. This may also explain why the prototypicality
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effect was observed in the studies of EOR: they only
focused on various constructions with locative semantics
in their analyses, which may be more semantically
coherent.

The question whether the effect of prototypicality is
related to the degree of semantic coherence of a con-
struction requires further investigation. As a counter-
argument to this claim, Ambridge, Bidgood, Pine,
Rowland, and Freudenthal (2015) find the effect of
semantics in the passive, a semantically general con-
struction. Note, however, that the interpretation of
semantics in their study (and in other related studies:
e.g. Ambridge et al., 2012, 2014) differs from semantic
prototypicality as defined in this study. The reasoning
behind this study (following EOR) is that more prototypi-
cal verbs are produced more frequently (because of how
the activation spreads within a semantic network). This is
why semantic verb features used in our study must
capture the essential properties of the respective
events. In contrast to this, the idea in the series of
studies mentioned above is that particular nuances of
verb meanings help in acquiring restrictions on the
verb use. Therefore, these studies focus on very specific
fine-grained features of a verb meaning, which do not
necessarily provide much information about the
general semantics of the event, but do help in discrimi-
nating between different verbs and verb classes. This
account is largely based on Pinker’s (2013) theory, in
which “it’s not what possibly or typically goes on in an
event that matters; it’s what the verb’s semantic rep-
resentation is choosy about in that event that matters”
(p. 127). For this reason, the effect of semantics in this
study and in EOR’s study is not immediately comparable
to the findings of Ambridge and colleagues. Building
more comprehensive verb meaning representations
based on both general event features and fine-grained
discriminatory features could open new prospects in
this area: such representations could be used for training
both our computational model and the model of
Ambridge and Blything (2015).

Comparing the results across three types of
analysis

We further carried out two additional analyses, to
account for the potential between-learner variation in
the linguistic input, and for the order of verb production
by each (simulated) learner. These additional analyses of
our simulated data suggest that the type of analysis may
affect the main findings, in particular in terms of the
observed effect of DP-contingency, which we address
below. This is consistent across the two additional ana-
lyses, suggesting that both individual variation and

order of learners’ preference is important, which is in
line with studies suggesting that individual differences
play a role in language learning (e.g. Ellis, 2004), and
that speakers do not arrive at the same mental
grammar (e.g. Dąbrowska, 2012; Misyak & Christiansen,
2012). To verify the predictions made by our model in
this respect, we would need to compare the results to
human empirical data on individual variation and order
of preference, which are missing yet.

Multiple measures of contextual frequency

Contingency may sometimes fail to demonstrate its inde-
pendent effect because of the other variable included
into the prediction model: joint verb–construction fre-
quency. Both variables capture how well a verb and a
construction go together (i.e. contextual frequency). If
the hypothesised cognitive effect of the verb–construc-
tion association is loaded on both variables, one of
them may show no independent impact. This issue was
addressed by testing a number of alternative prediction
models. One of our questions was whether models with
one or with two contextual frequency measures would
predict the data better. Our findings in this respect
were somewhat inconclusive. On the one hand, predic-
tion models which included two such measures were
in general ranked higher than models which included
only one measure. On the other hand, the independent
effects of both joint frequency and contingency were
not always present within the same prediction model.
In fact, it was the combined impact of the two measures
that was consistent across prediction models, but not the
independent effect of each contextual frequency
measure. This is why we suggest that it is a single
effect of the contextual frequency that is cognitively
plausible, while each measure (i.e. joint verb–construc-
tion frequency, Attraction, or DP-contingency) provides
a particular quantitative representation of this effect.
The correlation between the measures may be lower or
higher in a specific data set, and this is why sometimes,
but not always, it is justified to include two contextual
frequency measures into a prediction model.

The relation between association strength and joint
verb–construction frequency may also resemble the
relation between the effects of entrenchment and pre-
emption on learning argument structure restrictions,
described by Ambridge et al. (2015). Both the entrench-
ment and preemption hypotheses predict that the distri-
bution of verbs over argument structure constructions
affects the learning of the related usage restrictions,
because of the verb’s occurrence in either competing
constructions (preemption hypothesis), or in all construc-
tions (entrenchment hypothesis). In fact, independent
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contributions of these two factors within the same pre-
diction model have been sometimes found (e.g.
Ambridge, 2013; Blything et al., 2014). Yet, Ambridge
et al. (2015) suggest that entrenchment and preemption
are not independent mechanisms, but only effects that
may or may not be observed, depending on the exact
set of constructions in a study. Similarly, the effects of
both association strength and joint frequency in our
study capture the same mechanism of competition
between verbs in the speaker’s mind.

Whenever a single measure of contextual frequency
must be considered in the analysis, our study supports
joint verb–construction frequency as the best measure,
although more research is needed in this respect. In par-
ticular, a more advanced factor analysis (e.g. of the type
employed by Maki & Buchanan, 2008) may clarify the
relationship between different measures of contextual
frequency.

Marginal verb frequency

The results in terms of marginal (overall) verb frequency
are more straightforward. We found a consistent effect of
the marginal verb frequency, in line with some data in
language acquisition research (Blything et al., 2014;
Theakston et al., 2004). Besides, this effect was indepen-
dent from that of joint verb–construction frequency, in
accordance with the proposed distinction between
cotextual and cotext-free entrenchment (Schmid, 2010;
Schmid & Küchenhoff, 2013). Based on this result, the
effect of marginal verb frequency is worth investigating
in human production data. In particular, this is theoreti-
cally supported by some existing memory research
(Hockley & Cristi, 1996; Madan et al., 2010), where item
memory (reflected in our case in marginal verb fre-
quency) is believed to be independent of associative
memory (in our case: contextual frequency measures).

At the same time, the marginal frequency of a verb
may relate to the diversity of syntactic environments in
which this verb is used. Although some frequent verbs
may be used in only a few types of constructions, in
general a verb’s frequency is likely to be higher when
the verb is used in a great variety of construction
types. In this capacity, the observed effect of the mar-
ginal verb frequency in our study may be similar to
what Naigles and Hoff-Ginsberg (1998) report in their
child language study: verbs which appear in diverse syn-
tactic frames are used more frequently.

Speaking about the effect of marginal verb frequency
compared to that of contextual frequency, our data
suggest that contextual frequency has a higher impact
on verb selection than marginal frequency. This is a
rather reasonable conclusion: when cued by a

construction, speakers are more likely to produce fre-
quent verbs related to the cue, rather than verbs which
are frequent overall. However, if there are two verbs
fitting the construction equally well, the one which is
more frequent overall will be preferred. This is consistent
with the fact that constructions attract only some verbs
and reject other verbs (e.g. Goldberg, 1995; Stefano-
witsch & Gries, 2003).

Alternative construction representations

In this study, constructions were defined solely by their
shallow form. This is a common approach in corpus lin-
guistics, because it is easy to automatically look for syn-
tactic forms in a corpus. An efficient search for
constructional meanings, on the other hand, would
only be possible in a corpus that is semantically anno-
tated, which is most often not the case. At the same
time, constructions are commonly defined as pairings
of form and meaning (e.g. Croft, 2001; Goldberg, 1995;
Langacker, 1987). Assuming a priori that a shallow
pattern has a meaning does not guarantee that this
meaning is unified and coherent, and that the hypoth-
esised construction is cognitively real. Defining a con-
struction by explicitly describing both its form and its
meaning may be a better practice.

The described problem is particularly evident in the
current study, as well as in EOR’s studies. Form-based
patterns do not predefine the argument roles, and there-
fore, could be interpreted by participants in multiple
ways. This sometimes resulted in the production of
verbs with different argument structures within the
same pattern: e.g. come and throw in he/she/it _____
across the … ; or eat and write in he/she/it _____ as
the … ; with some usages even looking ungrammatical:
he/she/it knows as the … , he/she/it climbs of the … , etc.
(data from English native speakers in Ellis et al., 2014a).
Similarly, in our study multiple semantic interpretations
were possible, for example, for ARG1 VERB ARG2 ARG3.
Besides, the problem in both studies is reinforced by
the use of both animate (s/he) and inanimate (it) pro-
nouns as the subject of each test stimulus: it may be
argued that the animate pronouns represent an AGENT,
while the inanimate pronoun is more likely to be a
FORCE, hence two different constructions.

This leads us to the issue of the level of granularity of
constructional patterns. It has been suggested that
observed frequency effects may depend on the level of
granularity of a construction under consideration
(Lieven, 2010). The issue has also been touched on by
Theakston et al. (2004), who show that different research-
ers employ different constructions in similar studies: for
example, Ninio’s (1999a) VO and SVO constructions are
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combined within the same transitive construction by
Goldberg (1998). In other words, the results may be
also conditional on the chosen level of granularity of con-
structions. Together, these issues call for a similar analysis
of different constructional representations. An earlier
study with the same computational model (Matusevych,
Alishahi, & Backus, 2015a) suggests that the observed
effects of input-related factors on verb selection
depend, indeed, on the type of constructional represen-
tations. Yet, the issue requires further investigation.

Further theoretical challenges

This study additionally touches on some theoretical
questions that need to be addressed in the future. One
of them is the relation between naturalistic and exper-
imental verb production data. In this study, just as in
EOR, the production of verbs was elicited by construc-
tional stimuli. This is different from related studies of
verb production by children (e.g. Naigles & Hoff-Gins-
berg, 1998; Ninio, 1999a,b; Theakston et al., 2004),
which work with naturalistic samples of child language.
It is unclear whether such “field” data are directly com-
parable to the experimental data from elicited pro-
duction experiments: for example, in the natural data
some verbs within a construction may be used more
often simply because of the higher referential frequency
of the actions, states, etc. they refer to.

This leads us to the problem of defining the true
nature of such phenomena as a unit’s frequency, seman-
tic prototypicality, and entrenchment. In this study, we
have simplistically assumed that a unit’s frequency
reflects its entrenchment, and that the frequency is inde-
pendent of prototypicality, but these relations are not so
trivial (Geeraerts, Grondelaers, & Bakema, 1994; Schmid,
in press). To mention only some complications, when a
unit is perceptually salient in speech (e.g. a word which
is very unusual in a given genre or context), it may con-
tribute more to memory consolidation (and entrench-
ment) than when it is less salient. Besides, it has been
argued that the frequency (e.g. the referential frequency)
does play a role in determining prototypicality (see an
overview in Gilquin, 2006). Highly controlled studies of
these phenomena could clarify the theory, and compu-
tational modelling can be helpful in this respect.

Computational model of construction learning

The final issue to address is the computational model
employed in this study. On the one hand, simulation
results always depend to a certain extent on the
chosen model. To give an example from this study,
semantics in our model is only one out of many features

that guide construction learning, and the role of seman-
tics may be underestimated compared to human lear-
ners. If that is indeed the case, then the differences in
the size of effects reported in this study and in EOR’s
study may be attributed to the model’s inability to repli-
cate the exact linguistic behaviour of human speakers.

On the other hand, when the model, as in our case,
produced results similar to some existing experimental
findings, this supports the plausibility of the model.
The similarity of our results based on L1 and L2 simu-
lations to those of EOR supports the assumption that
incidental learning takes place in both L1 and L2 learn-
ing. Besides, the fact that the model is able to produce
verbs relevant for a given construction, suggests that
the emergent constructional representations in the
model may approximate well what humans learn. Unfor-
tunately, the type of the input data used in the present
study does not allow us to compare the production
data to the original study in terms of specific verbs and
constructions, and this issue should be addressed in
the future to better evaluate the potential of this compu-
tational model. One fruitful direction may be to investi-
gate the role of frequency vs. verb semantics in the
process of learning verb–construction associations (as
in Ambridge & Blything, 2015), as opposed to looking
at the static knowledge of such associations in simulated
speakers.

Conclusion

In this article we presented a computational simulation
of the verb production experiments of Ellis et al.
(2014a,b) using a usage-based, probabilistic model of
argument structure construction learning. Our exper-
iments showed that the model’s performance in the
verb production task could by predicted by the same
variables as the performance of human participants in
EOR’s experiments. Our follow-up analyses addressed
some methodological limitations of these experimental
studies, and suggested a refined version of the verb pro-
duction model proposed by EOR. In particular, the fre-
quency of production of verbs within argument
structure constructions in our simulated data could be
predicted by joint verb–construction frequency, contin-
gency of verb–construction mapping, and prototypical-
ity of verb meaning, although the effect of
prototypicality was lower than in the human data. We
then carried out two additional analyses on the same
simulated data sets, to account for individual variation
between speakers and for order of their verb preference.
The results suggest that the type of analysis may affect
the main findings. In particular, the effects of both joint
verb–construction frequency and contingency measure
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within the same prediction model are not always
observed. Finally, we compared a number of prediction
models with different variables. The best prediction
model included overall verb frequency in the input
data, semantic prototypicality, and two contextual fre-
quency measures: joint verb–construction frequency
and Attraction. However, the high correlation between
the contextual frequency measures suggests that their
effects are combined rather than independent. We
believe this refined prediction model should be tested
on experimental data with human subjects.

Notes

1. Note that in EOR’s set-up virtually no distinction is made
between first (L1) and second language (L2) speakers.
This is in line with the theories of incidental (statistical)
language learning, and with the proposal in cognitive lin-
guistics that much of the L2 learning relies on the same
cognitive mechanisms used in L1 learning (Ellis & Larsen-
Freeman, 2006; Ervin-Tripp, 1974; MacWhinney, 2012).

2. We follow the existing literature in assuming that the
entrenchment of a unit is a mere product of its fre-
quency, although the impact of each individual use
may, in fact, be strongly modulated by pragmatics
(Schmid, in press).

3. Note that we do not assign case-marking to personal
pronouns (e.g. me=I−acc), but use the actual forms
used in the corpus instead. Given the exceptionally
high token frequencies of these forms, it is sometimes
argued that forms such as I andme co-exist in the speak-
er’s lexicon, withoutme being derived from I (e.g. Diessel,
2007; Hudson, 1995).

4. As an alternative, we tried to calculate the similarity
between verb meanings using the actual sets of seman-
tic elements used in our data sets, build a resulting
network based on these similarity values for each con-
struction, and then calculate betweenness centrality on
this network. Recall, however, that many constructions
in our data sets occurred with only a few verb types:
computing betweenness centrality on such a small
network yielded an abundant number of 0s, which was
damaging for our analysis.

5. As in the original study, we add 0.01 to all the predictors
as well as to the outcome variable. We additionally incre-
ment DPA(v, c) by 1, to avoid having negative values in
the data. The last step is necessary, because we log-trans-
form all the variables as in EOR’s studies. The log-trans-
formation is justified by the fact that practice (which in
our case is reflected in production frequency) is believed
to be a power function of experience (Newell & Rosen-
bloom, 1981), and therefore a power transformation
can linearise the relationship between PF(v, c) and at
least one of the predictors, namely F(v, c).

6. These coefficients indicate the amount of variance
explained by the fixed factors and by the full model,
respectively (Johnson, 2014), and are computed using
an existing R implementation (Bartoń, 2016).

7. For a fairer comparison of model fits across the two types
of analysis, we also looked at the mixed-effects models

mentioned in the section Simulating the original exper-
iments, and their fits were still higher than reported here.

8. It has been argued (Greven & Kneib, 2010) that using
AICc to compare models with different structures of
random factors leads to a bias in favour of a more
complex random factor structure. For this reason, to
ensure the model comparison is fair, in linear models
we only use random intercepts over individual construc-
tions. In logistic models (accounting for individual differ-
ences), we would ideally use random intercepts over
individual learners and constructions, but some of the
models with random intercepts did not converge; there-
fore, we used simple logistic regression without random
effects.
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