21 research outputs found

    Improving outcomes for donation after circulatory death kidney transplantation: Science of the times

    Get PDF
    The use of kidneys donated after circulatory death (DCD) remains controversial due to concerns with regard to high incidences of early graft loss, delayed graft function (DGF), and impaired graft survival. As these concerns are mainly based on data from historical cohorts, they are prone to time-related effects and may therefore not apply to the current timeframe. To assess the impact of time on outcomes, we performed a time-dependent comparative analysis of outcomes of DCD and donation after brain death (DBD) kidney transplantations. Data of all 11,415 deceased-donor kidney transplantations performed in The Netherlands between 1990-2018 were collected. Based on the incidences of early graft loss, two eras were defined (1998-2008 [n = 3,499] and 2008-2018 [n = 3,781]), and potential time-related effects on outcomes evaluated. Multivariate analyses were applied to examine associations between donor type and outcomes. Interaction tests were used to explore presence of effect modification. Results show clear time-related effects on posttransplant outcomes. The 1998-2008 interval showed compromised outcomes for DCD procedures (higher incidences of DGF and early graft loss, impaired 1-year renal function, and inferior graft survival), whereas DBD and DCD outcome equivalence was observed for the 2008-2018 interval. This occurred despite persistently high incidences of DGF in DCD grafts, and more adverse recipient and donor risk profiles (recipients were 6 years older and the KDRI increased from 1.23 to 1.39 and from 1.35 to 1.49 for DBD and DCD donors). In contrast, the median cold ischaemic period decreased from 20 to 15 hours. This national study shows major improvements in outcomes of transplanted DCD kidneys over time. The time-dependent shift underpins that kidney transplantation has come of age and DCD results are nowadays comparable to DBD transplants. It also calls for careful interpretation of conclusions based on historical cohorts, and emphasises that retrospective studies should correct for time-related effects.Transplant surger

    Phenotypic Modulation of Smooth Muscle Cells in Atherosclerosis Is Associated With Downregulation of LMOD1, SYNPO2, PDLIM7, PLN, and SYNM

    Get PDF
    OBJECTIVE: Key augmented processes in atherosclerosis have been identified, whereas less is known about downregulated pathways. Here, we applied a systems biology approach to examine suppressed molecular signatures, with the hypothesis that they may provide insight into mechanisms contributing to plaque stability. APPROACH AND RESULTS: Muscle contraction, muscle development, and actin cytoskeleton were the most downregulated pathways (false discovery rate=6.99e-21, 1.66e-6, 2.54e-10, respectively) in microarrays from human carotid plaques (n=177) versus healthy arteries (n=15). In addition to typical smooth muscle cell (SMC) markers, these pathways also encompassed cytoskeleton-related genes previously not associated with atherosclerosis. SYNPO2, SYNM, LMOD1, PDLIM7, and PLN expression positively correlated to typical SMC markers in plaques (Pearson r>0.6, P0.8, P<0.0001). By immunohistochemistry, the proteins were expressed in SMCs in normal vessels, but largely absent in human plaques and intimal hyperplasia. Subcellularly, most proteins localized to the cytoskeleton in cultured SMCs and were regulated by active enhancer histone modification H3K27ac by chromatin immunoprecipitation-sequencing. Functionally, the genes were downregulated by PDGFB (platelet-derived growth factor beta) and IFNg (interferron gamma), exposure to shear flow stress, and oxLDL (oxidized low-density lipoprotein) loading. Genetic variants in PDLIM7, PLN, and SYNPO2 loci associated with progression of carotid intima-media thickness in high-risk subjects without symptoms of cardiovascular disease (n=3378). By eQTL (expression quantitative trait locus), rs11746443 also associated with PDLIM7 expression in plaques. Mechanistically, silencing of PDLIM7 in vitro led to downregulation of SMC markers and disruption of the actin cytoskeleton, decreased cell spreading, and increased proliferation. CONCLUSIONS: We identified a panel of genes that reflect the altered phenotype of SMCs in vascular disease and could be early sensitive markers of SMC dedifferentiation

    Iterative reconstruction incorporating background correction improves quantification of [18F]-NaF PET/CT images of patients with abdominal aortic aneurysm

    Get PDF
    Background A confounding issue in [18F]-NaF PET/CT imaging of abdominal aortic aneurysms (AAA) is the spill in contamination from the bone into the aneurysm. This study investigates and corrects for this spill in contamination using the background correction (BC) technique without the need to manually exclude the part of the AAA region close to the bone. Methods Seventy-two (72) datasets of patients with AAA were reconstructed with the standard ordered subset expectation maximization (OSEM) algorithm incorporating point spread function (PSF) modelling. The spill in effect in the aneurysm was investigated using two target regions of interest (ROIs): one covering the entire aneurysm (AAA), and the other covering the aneurysm but excluding the part close to the bone (AAAexc). ROI analysis was performed by comparing the maximum SUV in the target ROI (SUVmax(T)), the corrected cSUVmax (SUVmax(T) − SUVmean(B)) and the target-to-blood ratio (TBR = SUVmax(T)/SUVmean(B)) with respect to the mean SUV in the right atrium region. Results There is a statistically significant higher [18F]-NaF uptake in the aneurysm than normal aorta and this is not correlated with the aneurysm size. There is also a significant difference in aneurysm uptake for OSEM and OSEM + PSF (but not OSEM + PSF + BC) when quantifying with AAA and AAAexc due to the spill in from the bone. This spill in effect depends on proximity of the aneurysms to the bone as close aneurysms suffer more from spill in than farther ones. Conclusion The background correction (OSEM + PSF + BC) technique provided more robust AAA quantitative assessments regardless of the AAA ROI delineation method, and thus it can be considered as an effective spill in correction method for [18F]-NaF AAA studies

    Histopathology of aortic complications in bicuspid aortic valve versus Marfan syndrome: relevance for therapy?

    No full text
    Patients with bicuspid aortic valve (BAV) and patients with Marfan syndrome (MFS) are more prone to develop aortic dilation and dissection compared to persons with a tricuspid aortic valve (TAV). To elucidate potential common and distinct pathways of clinical relevance, we compared the histopathological substrates of aortopathy. Ascending aortic wall biopsies were divided in five groups: BAV (n = 36) and TAV (n = 23) without and with dilation and non-dilated MFS (n = 8). General histologic features, apoptosis, the expression of markers for vascular smooth muscle cell (VSMC) maturation, markers predictive for ascending aortic dilation in BAV, and expression of fibrillin-1 were investigated. Both MFS and BAV showed an altered distribution and decreased fibrillin-1 expression in the aorta and a significantly lower level of differentiated VSMC markers. Interestingly, markers predictive for aortic dilation in BAV were not expressed in the MFS aorta. The aorta in MFS was similar to the aorta in dilated TAV with regard to the presence of medial degeneration and apoptosis, while other markers for degeneration and aging like inflammation and progerin expression were low in MFS, comparable to BAV. Both MFS and BAV aortas have immature VSMCs, while MFS and TAV patients have a similar increased rate of medial degeneration. However, the mechanism leading to apoptosis is expected to be different, being fibrillin-1 mutation induced increased angiotensin-receptor-pathway signaling in MFS and cardiovascular aging and increased progerin in TAV. Our findings could explain why angiotensin inhibition is successful in MFS and less effective in TAV and BAV patients

    Cytoskeletal protein degradation in brain death donor kidneys associates with adverse post-transplant outcomes

    No full text
    In brain death, cerebral injury contributes to systemic biological dysregulation, causing significant cellular stress in donor kidneys adversely impacting the quality of grafts. Here, we hypothesized that DBD kidneys undergo proteolytic processes that may deem grafts susceptible to post-transplant dysfunction. Using mass spectrometry and immunoblotting, we mapped degradation profiles of cytoskeletal proteins in deceased and living donor kidney biopsies. We found that key cytoskeletal proteins in DBD kidneys were proteolytically cleaved, generating peptide fragments, predominantly in grafts with suboptimal posttransplant function. Interestingly, α-actinin-4 and Talin-1 proteolytic fragments were detected in brain-death but not in circulatory-death or living-donor kidneys with similar donor characteristics. As Talin-1 is a specific proteolytic target of Calpain-1, we investigated a potential trigger of Calpain activation and Talin-1 degradation using human ex-vivo precision-cut kidney slices and in-vitro podocytes. Notably, we showed that activation of Calpain-1 by Transforming-Growth Factor-β generated proteolytic fragments of Talin-1 that matched the degradation fragments detected in DBD preimplantation kidneys, also causing dysregulation of the actin cytoskeleton in human podocytes; events that were reversed by Calpain-1 inhibition. Our data provide initial evidence that brain death donor kidneys are more susceptible to cytoskeletal protein degradation. Correlation to posttransplant outcomes may be established by future studies.</p

    Bicuspid aortic valve: phosphorylation of c-Kit and downstream targets are prognostic for future aortopathy

    No full text
    The clinical course of many patients with a bicuspid aortic valve (BAV) is complicated by ascending aortic dilatation. Currently, the indication for aortic surgery is solely based on the aortic diameter and subsequently only a small proportion of BAV patients undergoing valve surgery require concomitant ascending aortic replacement based on these recommendations. Unfortunately, a substantial number of BAV patients still develop aortic dilatation in the future and would potentially benefit from a more aggressive approach towards ascending aortic replacement. We, therefore, designed this study to identify molecular biological markers in the aortic wall predictive of aortopathy in BAV. Ascending aortic wall specimen of BAV (n = 36) and tricuspid aortic valve (TAV) (n = 23), both without and with (> 44 mm) dilatation were investigated histologically and immunohistochemically for the expression of markers for vascular remodelling [transforming growth factor (TGF)-beta, phosphorylated Smad2, matrix metalloproteinase 9 (MMP9)], cellular differentiation [c-Kit, phosphorylated-c-Kit, hypoxia-inducable factor-1 alpha (HIF1 alpha)] and haemodynamic influences on the aortic wall [endothelial nitric oxide (eNOS)]. All BAV patients showed significantly less inflammation (P < 0.001) and an altered intima/media ratio when compared with TAV patients. The expression of markers of a signalling pathway characteristic for cellular dedifferentiation, as exemplified by the marked expression of c-Kit, phosphorylated c-Kit and HIF1 alpha; in the dilated BAV group was however completely comparable with only a subgroup of the non-dilated BAV (BAb), whereas the remainder of the non-dilated BAV group (BAa) was significantly distinct. This difference between the dilated BAV and BAa was further confirmed in the expression of TGF-beta, phosphorylated Smad2, MMP9 and eNOS. Besides the expression pattern, similarity in the dilated BAV and BAb was also noted clinically in the most common variant of commissure position and conjoined raphe of the BAV. Based on these observations, we consider the BAb group a likely candidate for future dilatation as opposed to the BAa group. Using a panel of molecular tissue markers, the non-dilated BAV patients can be divided into groups susceptible and non-susceptible to aortopathy

    Donor characteristics and their impact on kidney transplantation outcomes: results from two nationwide instrumental variable analyses based on outcomes of donor kidney pairs accepted for transplantation

    No full text
    Background Donor-characteristics and donor characteristics-based decision algorithms are being progressively used in the decision process whether or not to accept an available donor kidney graft for transplantation. While this may improve outcomes, the performance characteristics of the algorithms remains moderate. To estimate the impact of donor factors of grafts accepted for transplantation on transplant outcomes, and to test whether implementation of donor-characteristics-based algorithms in clinical decision-making is justified, we applied an instrumental variable analysis to outcomes for kidney donor pairs transplanted in different individuals. Methods This analysis used (dis)congruent outcomes of kidney donor pairs as an instrument and was based on national transplantation registry data for all donor kidney pairs transplanted in separate individuals in the Netherlands (1990-2018, 2,845 donor pairs), and the United Kingdom (UK, 2000-2018, 11,450 pairs). Incident early graft loss (EGL) was used as the primary discriminatory factor. It was reasoned that a scenario with a dominant impact of donor variables on transplantation outcomes would result in high concordance of EGL in both recipients, whilst dominance of asymmetrical outcomes could indicate a more complex scenario, involving an interaction of donor, procedural and recipient factors. Findings Incidences of congruent EGL (Netherlands: 1·2%, UK: 0·7%) were slightly lower than the arithmetical (stochastic) incidences, suggesting that once a graft has been accepted for transplantation, donor factors minimally contribute to incident EGL. A long-term impact of donor factors was explored by comparing outcomes for functional grafts from donor pairs with asymmetrical vs. symmetrical outcomes. Recipient survival was similar for both groups, but a slightly compromised graft survival was observed for grafts with asymmetrical outcomes in the UK cohort: (10-years Hazard Ratio for graft loss: 1·18 [1·03-1·35] p<0·018); and 5 years eGFR (48·6 [48·3–49·0] vs. 46·0 [44·5–47·6] ml/min in the symmetrical outcome group, p<0·001). Interpretation Our results suggest that donor factors for kidney grafts deemed acceptable for transplantation impact minimally on transplantation outcomes. A strong reliance on donor factors and/or donor-characteristics-based decision algorithms could result in unjustified rejection of grafts. Future efforts to optimize transplant outcomes should focus on a better understanding of the recipient factors underlying transplant outcomes. Funding None
    corecore