1,385 research outputs found

    Structural analysis of a bolted joint concept for the space shuttle's solid rocket motor casing

    Get PDF
    The Space Shuttle Challenger accident is thought to have been caused by the failure of one of the tang-clevis joints joining together the casing segments of the Solid Rocket Motors (SRM). Excessive displacement between the tang and clevis, possibly unseating the O-ring seals, may have initiated the resulting accident. An effort was made at NASA Langley Research Center to design an alternative concept for mating the casing segments. A bolted flange joint concept was designed and analyzed to determine if the concept would effectively maintain a seal while minimizing joint weight and controlling stress levels. It is shown that under the loading conditions analyzed the seal area of the joint remains seated. The only potential stress problem is a stress concentration in the flange at the edge of the bolt hole, which is highly localized. While heavier than the existing joint, this concept does have some advantages making the bolted joint an attractive alternative

    Making Cereal Box Dioramas of Native American Historic Homes and Culture

    Get PDF
    Hands-on projects such as creating a three-dimensional diorama are among the most memorable of positive elementary school experiences, yet they are generally uncommon because these complex projects are daunting to undertake. Therefore, it is important to prepare preservice teachers with the skills to lead children in creating these types of projects. This document is a compilation of preservice teacher work completed during a social studies methods class that assists instructors in teaching students to create unique dioramas. After the preservice teachers had constructed dioramas and assisted elementary students in making their own, they reflected on previous social studies projects from their childhoods and considered the learning outcomes of the current project. Eighty preservice teachers enrolled in a social studies methods course participated in the study. These college students created their own Native American dioramas along with images for furnishing and finishing dioramas of the Native American group on which they focused. The five Native American groups explored through dioramas include the Iroquois of the northeastern United States, the Seminole of the Southeast, the Lakota of the Central Plains, Hopi (and Navajo) of the American Southwest and the Haida of the Northwest Coast. This document provides photoillustrated examples and steps of how to create an intricate diorama from a cereal box, recycled copy paper, white craft glue, paints, images, and common craft items. The cereal box base is cut to open like a book and a model of a Native American home made of recycled cardboard is affixed over a cut-out hole in the cover so that the box opens to reveal the interior of the home. All surfaces are covered with a layer of torn recycled copy paper that is securely glued, coated with white gesso base paint, and then decorated with acrylic craft paints. In the facing inside enclosure, a ceremony scene is displayed. The back of the cereal box features crafts of the Native American group, while the other cereal box exterior sides show foods, clothing, and other cultural Reflection data indicate that preservice teachers recognized the large amount of time and patience necessary to complete a quality diorama and the valuable amount of in-depth learning that results, including a deeper respect for Native American people and greater confidence in teaching these concepts. Therefore, we recommend diorama projects in teaching about diverse cultures (2 tables, 5 figures, 2 photo-illustrated appendices)

    Plasmonic Cloaking of Cylinders: Finite Length, Oblique Illumination and Cross-Polarization Coupling

    Full text link
    Metamaterial cloaking has been proposed and studied in recent years following several interesting approaches. One of them, the scattering-cancellation technique, or plasmonic cloaking, exploits the plasmonic effects of suitably designed thin homogeneous metamaterial covers to drastically suppress the scattering of moderately sized objects within specific frequency ranges of interest. Besides its inherent simplicity, this technique also holds the promise of isotropic response and weak polarization dependence. Its theory has been applied extensively to symmetrical geometries and canonical 3D shapes, but its application to elongated objects has not been explored with the same level of detail. We derive here closed-form theoretical formulas for infinite cylinders under arbitrary wave incidence, and validate their performance with full-wave numerical simulations, also considering the effects of finite lengths and truncation effects in cylindrical objects. In particular, we find that a single isotropic (idealized) cloaking layer may successfully suppress the dominant scattering coefficients of moderately thin elongated objects, even for finite lengths comparable with the incident wavelength, providing a weak dependence on the incidence angle. These results may pave the way for application of plasmonic cloaking in a variety of practical scenarios of interest.Comment: 17 pages, 11 figures, 2 table

    Determination of electromagnetic medium from the Fresnel surface

    Full text link
    We study Maxwell's equations on a 4-manifold where the electromagnetic medium is described by an antisymmetric (22)2\choose 2-tensor κ\kappa. In this setting, the Tamm-Rubilar tensor density determines a polynomial surface of fourth order in each cotangent space. This surface is called the Fresnel surface and acts as a generalisation of the light-cone determined by a Lorentz metric; the Fresnel surface parameterises electromagnetic wave-speed as a function of direction. Favaro and Bergamin have recently proven that if κ\kappa has only a principal part and if the Fresnel surface of κ\kappa coincides with the light cone for a Lorentz metric gg, then κ\kappa is proportional to the Hodge star operator of gg. That is, under additional assumptions, the Fresnel surface of κ\kappa determines the conformal class of κ\kappa. The purpose of this paper is twofold. First, we provide a new proof of this result using Gr\"obner bases. Second, we describe a number of cases where the Fresnel surface does not determine the conformal class of the original (22)2\choose 2-tensor κ\kappa. For example, if κ\kappa is invertible we show that κ\kappa and κ1\kappa^{-1} have the same Fresnel surfaces.Comment: 23 pages, 1 figur

    Exposure Path Perceptions and Protective Actions in Biological Water Contamination Emergencies

    Get PDF
    This study extends the Protective Action Decision Model, developed to address disaster warning responses in the context of natural hazards, to “boil water” advisories. The study examined 110 Boston residents’ and 203 Texas students’ expectations of getting sick through different exposure paths for contact with contaminated water. In addition, the study assessed respondents’ actual implementation (for residents) or behavioral expectations (for students) of three different protective actions – bottled water, boiled water, and personally chlorinated water – as well as their demo-graphic characteristics and previous experience with water contamination. The results indicate that people distinguish among the exposure paths, but the differences are small (one-third to one-half of the response scale). Nonetheless, the perceived risk from the exposure paths helps to explain why people are expected to consume (or actually consumed) bottled water rather than boiled or personally chlorinated water. Overall, these results indicate that local authorities should take care to communicate the relative risks of different exposure paths and should expect that people will respond to a boil water order primarily by consuming bottled water. Thus, they should make special efforts to increase supplies of bottled water in their communities during water contamination emergencies

    Mutual Coherence of Polarized Light in Disordered Media: Two-Frequency Method Extended

    Full text link
    The paper addresses the two-point correlations of electromagnetic waves in general random, bi-anisotropic media whose constitutive tensors are complex Hermitian, positive- or negative-definite matrices. A simplified version of the two-frequency Wigner distribution (2f-WD) for polarized waves is introduced and the closed form Wigner-Moyal equation is derived from the Maxwell equations. In the weak-disorder regime with an arbitrarily varying background the two-frequency radiative transfer (2f-RT) equations for the associated 2×22\times 2 coherence matrices are derived from the Wigner-Moyal equation by using the multiple scale expansion. In birefringent media, the coherence matrix becomes a scalar and the 2f-RT equations take the scalar form due to the absence of depolarization. A paraxial approximation is developed for spatialy anisotropic media. Examples of isotropic, chiral, uniaxial and gyrotropic media are discussed

    Repulsive Casimir Force in Chiral Metamaterials

    Full text link
    We demonstrate theoretically that one can obtain repulsive Casimir forces and stable nanolevitations by using chiral metamaterials. By extending the Lifshitz theory to treat chiral metamaterials, we find that a repulsive force and a minimum of the interaction energy exist for strong chirality, under realistic frequency dependencies and correct limiting values (for zero and infinite frequencies) of the permittivity, permeability, and chiral coefficients.Comment: 4 pages, 4 figures, letter. submitted to Phys. Rev. Let

    Perturbation theory for anisotropic dielectric interfaces, and application to sub-pixel smoothing of discretized numerical methods

    Full text link
    We derive a correct first-order perturbation theory in electromagnetism for cases where an interface between two anisotropic dielectric materials is slightly shifted. Most previous perturbative methods give incorrect results for this case, even to lowest order, because of the complicated discontinuous boundary conditions on the electric field at such an interface. Our final expression is simply a surface integral, over the material interface, of the continuous field components from the unperturbed structure. The derivation is based on a "localized" coordinate-transformation technique, which avoids both the problem of field discontinuities and the challenge of constructing an explicit coordinate transformation by taking a limit in which a coordinate perturbation is infinitesimally localized around the boundary. Not only is our result potentially useful in evaluating boundary perturbations, e.g. from fabrication imperfections, in highly anisotropic media such as many metamaterials, but it also has a direct application in numerical electromagnetism. In particular, we show how it leads to a sub-pixel smoothing scheme to ameliorate staircasing effects in discretized simulations of anisotropic media, in such a way as to greatly reduce the numerical errors compared to other proposed smoothing schemes.Comment: 10 page

    Efficient noninteractive certification of RSA moduli and beyond

    Get PDF
    In many applications, it is important to verify that an RSA public key (N; e) speci es a permutation over the entire space ZN, in order to prevent attacks due to adversarially-generated public keys. We design and implement a simple and e cient noninteractive zero-knowledge protocol (in the random oracle model) for this task. Applications concerned about adversarial key generation can just append our proof to the RSA public key without any other modi cations to existing code or cryptographic libraries. Users need only perform a one-time veri cation of the proof to ensure that raising to the power e is a permutation of the integers modulo N. For typical parameter settings, the proof consists of nine integers modulo N; generating the proof and verifying it both require about nine modular exponentiations. We extend our results beyond RSA keys and also provide e cient noninteractive zero- knowledge proofs for other properties of N, which can be used to certify that N is suitable for the Paillier cryptosystem, is a product of two primes, or is a Blum integer. As compared to the recent work of Auerbach and Poettering (PKC 2018), who provide two-message protocols for similar languages, our protocols are more e cient and do not require interaction, which enables a broader class of applications.https://eprint.iacr.org/2018/057First author draf

    Perfect lensing with phase conjugating surfaces: Towards practical realization

    Full text link
    It is theoretically known that a pair of phase conjugating surfaces can function as a perfect lens, focusing propagating waves and enhancing evanescent waves. However, the known experimental approaches based on thin sheets of nonlinear materials cannot fully realize the required phase conjugation boundary condition. In this paper we show that the ideal phase conjugating surface is in principle physically realizable and investigate the necessary properties of nonlinear and nonreciprocal particles which can be used to build a perfect lens system. The physical principle of the lens operation is discussed in detail and directions of possible experimental realizations are outlined.Comment: 16 pages, 5 figure
    corecore