9,355 research outputs found
False Vacuum Chaotic Inflation: The New Paradigm?
Recent work is reported on inflation model building in the context of
supergravity and superstrings, with special emphasis on False Vacuum (`Hybrid')
Chaotic Inflation. Globally supersymmetric models do not survive in generic
supergravity theories, but fairly simple conditions can be formulated which do
ensure successful supergravity inflation. The conditions are met in some of the
versions of supergravity that emerge from superstrings.Comment: 4 pages, LATEX, LANCASTER-TH 94-1
Nitrogen removal during summer and winter in a primary facultative WSP pond: preliminary findings from 15N-labelled ammonium tracking techniques
Nitrogen removal mechanisms and pathways within WSP have been the focus of much research over the last 30 years. Debates and theories postulated continue to refine our knowledge regarding the cycling and removal pathways for this important nutrient, but a succinct answer has yet to be provided for holistic nitrogen removal. In this study, two experimental runs using labelled 15N as a stable isotope tracking technique were conducted on a pilot-scale primary facultative WSP in the UK; one in the summer of 2006, and the other in the winter of 2007. An ammonium chloride (15NH4Cl) spike was prepared as the slug for each experimental run, which also contained rhodamine WT to act as a dye tracer enabling the hydraulic characteristics of the pond to be mapped. Initial results from the study are reported here, and findings are compared and contrasted. Preliminary findings reveal that a greater proportion of 15N is incorporated into the algal biomass by assimilation and subsequent release as soluble organic nitrogen in summer than in winter. 15N ammonium passes out of the system much sooner and in a much higher proportion in the winter than in summer
COMMITTTEE ON ENERGY AND RESEARCH DRAFT REPORT on the communication from the Commission of the European communities to the council on new lines of action by the European Community in the field of energy saving (Doc • 217/7 9 ). 18.12.79
Cosmological Higgs fields
We present a time-dependent solution to the coupled Einstein-Higgs equations
for general Higgs-type potentials in the context of flat FRW cosmological
models. Possible implications are discussed.Comment: 5 pages, no figures. Version to be published in Phys. Rev. Lett.
Changes: references and citations added; introduction partly modified;
expanded discussion of relations between parameters in the Higgs potentia
Towards the Theory of Cosmological Phase Transitions
We discuss recent progress (and controversies) in the theory of finite
temperature phase transitions. This includes the structure of the effective
potential at a finite temperature, the infrared problem in quantum statistics
of gauge fields, the theory of formation of critical and subcritical bubbles
and the theory of bubble wall propagation.Comment: 50 p
Pre-Big-Bang Requires the Universe to be Exponentially Large From the Very Beginning
We show that in a generic case of the pre-big-bang scenario, inflation will
solve cosmological problems only if the universe at the onset of inflation is
extremely large and homogeneous from the very beginning. The size of a
homogeneous part of the universe at the beginning of the stage of pre-big-bang
(PBB) inflation must be greater than , where is the
stringy length. The total mass of an inflationary domain must be greater than
, where . If the universe is initially
radiation dominated, then its total entropy at that time must be greater than
. If the universe is closed, then at the moment of its formation it
must be uniform over causally disconnected domains. The natural
duration of the PBB stage in this scenario is . We argue that the
initial state of the open PBB universe could not be homogeneous because of
quantum fluctuations. Independently of the issue of homogeneity, one must
introduce two large dimensionless parameters, , and , in order to solve the flatness problem in the PBB cosmology. A regime
of eternal inflation does not occur in the PBB scenario. This should be
compared with the simplest versions of the chaotic inflation scenario, where
the regime of eternal inflation may begin in a universe of size
with vanishing initial radiation entropy, mass , and geometric entropy
O(1). We conclude that the current version of the PBB scenario cannot replace
usual inflation even if one solves the graceful exit problem in this scenario.Comment: 14 pages, a discussion of the flatness problem in the PBB cosmology
is adde
Inflation without Slow Roll
We draw attention to the possibility that inflation (i.e. accelerated
expansion) might continue after the end of slow roll, during a period of fast
oscillations of the inflaton field \phi . This phenomenon takes place when a
mild non-convexity inequality is satisfied by the potential V(\phi). The
presence of such a period of \phi-oscillation-driven inflation can
substantially modify reheating scenarios.
In some models the effect of these fast oscillations might be imprinted on
the primordial perturbation spectrum at cosmological scales.Comment: 9 pages, Revtex, psfig, 1 figure, minor modifications, references
adde
The Triple-Alpha Process and the Anthropically Allowed Values of the Weak Scale
In multiple-universe models, the constants of nature may have different
values in different universes. Agrawal, Barr, Donoghue and Seckel have pointed
out that the Higgs mass parameter, as the only dimensionful parameter of the
standard model, is of particular interest. By considering a range of values of
this parameter, they showed that the Higgs vacuum expectation value must have a
magnitude less than 5.0 times its observed value, in order for complex
elements, and thus life, to form. In this report, we look at the effects of the
Higgs mass parameter on the triple-alpha process in stars. This process, which
is greatly enhanced by a resonance in Carbon-12, is responsible for virtually
all of the carbon production in the universe. We find that the Higgs vacuum
expectation value must have a magnitude greater than 0.90 times its observed
value in order for an appreciable amount of carbon to form, thus significantly
narrowing the allowed region of Agrawal et al.Comment: 9 pages, 1 figur
Wave Function of a Brane-like Universe
Within the mini-superspace model, brane-like cosmology means performing the
variation with respect to the embedding (Minkowski) time before fixing
the cosmic (Einstein) time . The departure from Einstein limit is
parameterized by the 'energy' conjugate to , and characterized by a
classically disconnected Embryonic epoch. In contrast with canonical quantum
gravity, the wave-function of the brane-like Universe is (i) -dependent,
and (ii) vanishes at the Big Bang. Hartle-Hawking and Linde proposals dictate
discrete 'energy' levels, whereas Vilenkin proposal resembles -particle
disintegration.Comment: Revtex, 4 twocolumn pages, 3 eps figures (accepted for publication in
Class. Quan. Grav.
Higgs Inflation, Quantum Smearing and the Tensor to Scalar Ratio
In cosmic inflation driven by a scalar gauge singlet field with a tree level
Higgs potential, the scalar to tensor ratio r is estimated to be larger than
0.036, provided the scalar spectral index n_s >= 0.96. We discuss quantum
smearing of these predictions arising from the inflaton couplings to other
particles such as GUT scalars, and show that these corrections can
significantly decrease r. However, for n_s >= 0.96, we obtain r >= 0.02 which
can be tested by the Planck satellite.Comment: 10 pages, 3 figures and 3 table
- …
