22 research outputs found

    Comparing model performance of two rainfall-runoff models in the Rhine basin using different atmospheric forcing data sets

    Get PDF
    Due to the growing wish and necessity to simulate the possible effects of climate change on the discharge regime on large rivers such as the Rhine in Europe, there is a need for well performing hydrological models that can be applied in climate change scenario studies. There exists large variety in available models and there is an ongoing debate in research on rainfall-runoff modelling on whether or not physically based distributed models better represent observed discharges than conceptual lumped model approaches do. In addition, it is argued that Land Surface Models (LSMs) carry the potential to accurately estimate hydrological partitioning, because they solve the coupled water and energy balance. In this paper, the hydrological models HBV and VIC were compared for the Rhine basin by testing their performance in simulating discharge. Overall, the semi-distributed conceptual HBV model performed much better than the distributed land surface model VIC (<i>E</i>=0.62, <i>r</i><sup>2</sup>=0.65 vs. <i>E</i>=0.31, <i>r</i><sup>2</sup>=0.54 at Lobith). It is argued here that even for a well-documented river basin such as the Rhine, more complex modelling does not automatically lead to better results. Moreover, it is concluded that meteorological forcing data has a considerable influence on model performance, irrespectively to the type of model structure and the need for ground-based meteorological measurements is emphasized

    Future flood risk estimates along the river Rhine

    Get PDF
    In Europe, water management is moving from flood defence to a risk management approach, which takes both the probability and the potential consequences of flooding into account. It is expected that climate change and socio-economic development will lead to an increase in flood risk in the Rhine basin. To optimize spatial planning and flood management measures, studies are needed that quantify future flood risks and estimate their uncertainties. In this paper, we estimated the current and future fluvial flood risk in 2030 for the entire Rhine basin in a scenario study. The change in value at risk is based on two land-use projections derived from a land-use model representing two different socio-economic scenarios. Potential damage was calculated by a damage model, and changes in flood probabilities were derived from two climate scenarios and hydrological modeling. We aggregated the results into seven sections along the Rhine. It was found that the annual expected damage in the Rhine basin may increase by between 54% and 230%, of which the major part (~ three-quarters) can be accounted for by climate change. The highest current potential damage can be found in the Netherlands (110 billion €), compared with the second (80 billion €) and third (62 billion €) highest values in two areas in Germany. Results further show that the area with the highest fluvial flood risk is located in the Lower Rhine in Nordrhein-Westfalen in Germany, and not in the Netherlands, as is often perceived. This is mainly due to the higher flood protection standards in the Netherlands as compared to Germany

    KKF-Model Platform Coupling : summary report KKF01b

    Get PDF
    Nederland bereidt zich voor op een sneller stijgende zeespiegel en een veranderend klimaat. Hiervoor is het Deltaprogramma gestart. Dit deltaprogramma voorziet een serie beslissingen die grote gevolgen zullen hebben voor het beheer van het water in Nederland. Om deze beslissingen zorgvuldig te nemen is informatie nodig over hoe het klimaat en de stijgende zeespiegel dit waterbeheer zullen beïnvloeden. De modellen die de gevolgen van klimaatverandering berekenen zullen daarom met dezelfde klimaat forcering en gekoppeld aan elkaar moeten worden gebruikt. In dit onderzoek is gekeken naar het linken van hydrologische en hydrodynamische modellen – en daaraan gekoppelde modellen die de ontwikkelingen in natuur en landgebruik modelleren -- die het gebied van de Alpen tot en met de Noordzee inclusief Nederland beschrijven

    ACER: developing Adaptive Capacity to Extreme events in the Rhine basin

    Get PDF
    Het algemene doel van het ACER project is om de gevolgen van klimaatverandering en adaptatie strategieën te onderzoeken voor het Rijnstroomgebied, zowel grensoverschrijdend in Duitsland en Frankrijk als voor het regionale waterbeheer in Nederland. ACER gebruikt een scenario analyse om effecten en oplossing te analyseren en vergelijken, onder de veronderstelling van verschillende klimaatverandering en sociaal-economische scenario’s voor 2050. Aan de basis van deze scenario aanpak staat een internationale groep van belanghebbenden en waterbeheerders uit verschillende bestuurslagen in het Rijnstroomgebied. Het is de vraag of de maatregelen die momenteel stroomopwaarts in Duitsland worden uitgevoerd positieve of negatieve effecten op de piekavoeren benedenstrooms hebbe

    Floods: vulnerability, risks and management. A joint report of ETC CCA and ICM

    Get PDF
    This report describes floods in a European context with the purpose of highlighting factors that contribute to the occurrence and adverse consequences of floods, and possibilities to reduce flood risks from inland waters and rainfall. It includes a discussion on changes in flood patterns and illustrates how different scenarios for climate change may affect vulnerability to floods and flood risks. The report provides illustrative examples of flood risk management from the local to European level

    Rhine at risk?: Impact of climate change on low-probability floods in the Rhine basin and the effectiveness of flood management measures

    Get PDF
    Aerts, J.C.J.H. [Promotor]Kwadijk, J.C.J. [Copromotor]Dolman, A.J. [Copromotor
    corecore