43 research outputs found

    A tablet-based quantitative assessment of manual dexterity for detection of early psychosis

    Get PDF
    BackgroundWe performed a pilot study on whether tablet-based measures of manual dexterity can provide behavioral markers for detection of first-episode psychosis (FEP), and whether cortical excitability/inhibition was altered in FEP.MethodsBehavioral and neurophysiological testing was undertaken in persons diagnosed with FEP (N = 20), schizophrenia (SCZ, N = 20), autism spectrum disorder (ASD, N = 20), and in healthy control subjects (N = 20). Five tablet tasks assessed different motor and cognitive functions: Finger Recognition for effector (finger) selection and mental rotation, Rhythm Tapping for temporal control, Sequence Tapping for control/memorization of motor sequences, Multi Finger Tapping for finger individuation, and Line Tracking for visuomotor control. Discrimination of FEP (from other groups) based on tablet-based measures was compared to discrimination through clinical neurological soft signs (NSS). Cortical excitability/inhibition, and cerebellar brain inhibition were assessed with transcranial magnetic stimulation.ResultsCompared to controls, FEP patients showed slower reaction times and higher errors in Finger Recognition, and more variability in Rhythm Tapping. Variability in Rhythm Tapping showed highest specificity for the identification of FEP patients compared to all other groups (FEP vs. ASD/SCZ/Controls; 75% sensitivity, 90% specificity, AUC = 0.83) compared to clinical NSS (95% sensitivity, 22% specificity, AUC = 0.49). Random Forest analysis confirmed FEP discrimination vs. other groups based on dexterity variables (100% sensitivity, 85% specificity, balanced accuracy = 92%). The FEP group had reduced short-latency intra-cortical inhibition (but similar excitability) compared to controls, SCZ, and ASD. Cerebellar inhibition showed a non-significant tendency to be weaker in FEP.ConclusionFEP patients show a distinctive pattern of dexterity impairments and weaker cortical inhibition. Easy-to-use tablet-based measures of manual dexterity capture neurological deficits in FEP and are promising markers for detection of FEP in clinical practice

    Brain Plasticity and Upper Limb Function After Stroke: Some Implications for Rehabilitation

    No full text
    Neuroimaging and neurophysiology techniques were used to study some aspects of cortical sensory and motor system reorganisation in patients in the chronic phase after stroke. Using Diffusion Tensor Imaging, we found that the degree of white matter integrity of the corticofugal tracts (CFT) was positively related to grip strength. Structural changes of the CFT were also associated with functional changes in the corticospinal pathways, measured using Transcranial Magnetic Stimulation. This suggests that structural and functional integrity of the CFT is essential for upper limb function after stroke. Using functional magnetic resonance imaging (fMRI), to measure brain activity during slow and fast passive hand movements, we found that velocity-dependent brain activity correlated positively with neural contribution to passive movement resistance in the hand in ipsilateral primary sensory (S1) and motor (M1) cortex in both patients and controls. This suggests a cortical involvement in the hyperactive reflex response of flexor muscles upon fast passive stretch. Effects of a four week passive-active movement training programme were evaluated in chronic stroke patients. The group improved in range of motion and upper limb function after the training. The patients also reported improvements in a variety of daily tasks requiring the use of the affected upper limb. Finally, we used fMRI to explore if brain activity during passive hand movement is related to time after stroke, and if such activity can be affected with intense training. In patients, reduced activity over time was found in supplementary motor area (SMA), contralateral M1 and prefrontal and parietal association areas along with ipsilateral cerebellum. After training, brain activity increased in SMA, ipsilateral S1 and intraparietal sulcus, and contralateral cerebellum in parallel with functional improvements of the upper limb. The findings suggest a use-dependent modification of cortical activation patterns in the affected hand after stroke

    Effects of 60 Min Electrostimulation With the EXOPULSE Mollii Suit on Objective Signs of Spasticity

    No full text
    International audienceBackground: The EXOPULSE Mollii method is an innovative full-body suit approach for non-invasive electrical stimulation, primarily designed to reduce disabling spasticity and improve motor function through the mechanism of reciprocal inhibition. This study aimed to evaluate the effectiveness of one session of stimulation with the EXOPULSE Mollii suit at different stimulation frequencies on objective signs of spasticity and clinical measures, and the subjective perceptions of the intervention. Methods: Twenty patients in the chronic phase after stroke were enrolled in a cross-over, double-blind controlled study. Electrical stimulation delivered through EXOPULSE Mollii was applied for 60 min at two active frequencies (20 and 30 Hz) and in OFF-settings (placebo) in a randomized order, every second day. Spasticity was assessed with controlled-velocity passive muscle stretches using the NeuroFlexor hand and foot modules. Surface electromyography (EMG) for characterizing flexor carpi radialis, medial gastrocnemius, and soleus muscles activation, Modified Ashworth Scale and range of motion were used as complementary tests. Finally, a questionnaire was used to assess the participants' perceptions of using the EXOPULSE Mollii suit. Results: At group level, analyses showed no significant effect of stimulation at any frequency on NeuroFlexor neural component (NC) and EMG amplitude in the upper or lower extremities (p > 0.35). Nevertheless, the effect was highly variable at the individual level, with eight patients exhibiting reduced NC (>1 N) in the upper extremity after stimulation at 30 Hz, 5 at 20 Hz and 3 in OFF settings. All these patients presented severe spasticity at baseline, i.e., NC > 8 N. Modified Ashworth ratings of spasticity and range of motion did not change significantly after stimulation at any frequency. Finally, 75% of participants reported an overall feeling of well-being during stimulation, with 25% patients describing a muscle-relaxing effect on the affected hand and/or foot at both 20 and 30 Hz. Conclusions: The 60 min of electrical stimulation with EXOPULSE Mollii suit did not reduce spasticity consistently in the upper and lower extremities in the chronic phase after stroke. Findings suggest a need for further studies in patients with severe spasticity after stroke including repeated stimulation sessions. Clinical Trial Registration: https://clinicaltrials.gov/ct2/show/NCT04076878, identifier: NCT04076878

    VALIDITY, INTRA-RATER RELIABILITY AND NORMATIVE DATA OF THE NEUROFLEXOR™ DEVICE TO MEASURE SPASTICITY OF THE ANKLE PLANTAR FLEXORS AFTER STROKE

    No full text
    International audienceObjective: Quantification of lower limb spasticity after stroke and the differentiation of neural from passive muscle resistance remain key clinical challenges. The aim of this study was to validate the novel NeuroFlexor foot module, to assess the intrarater reliability of measurements and to identify normative cut-off values.Methods: Fifteen patients with chronic stroke with clinical history of spasticity and 18 healthy subjects were examined with the NeuroFlexor foot module at controlled velocities. Elastic, viscous and neural components of passive dorsiflexion resistance were quantified (in Newton, N). The neural component, reflecting stretch reflex mediated resistance, was validated against electromyography activity. A test-retest design with a 2-way random effects model permitted study of intra-rater reliability. Finally, data from 73 healthy subjects were used to establish cutoff values according to mean + 3 standard deviations and receiver operating characteristic curve analysis.Results: The neural component was higher in stroke patients, increased with stretch velocity and correlated with electromyography amplitude. Reliability was high for the neural component (intraclass correlation coefficient model 2.1 (ICC2,1) ≥ 0.903) and good for the elastic component (ICC2,1 ≥ 0.898). Cutoff values were identified, and all patients with neural component above the limit presented pathological electromyography amplitude (area under the curve (AUC) = 1.00, sensitivity = 100%, specificity = 100%).Conclusion: The NeuroFlexor may offer a clinically feasible and non-invasive way to objectively quantify lower limb spasticity. LAY ABSTRACTSpasticity is a sensorimotor impairment, which often occurs after stroke as well as after other injuries to the central nervous system. Spasticity is characterized by increased resistance to passive stretch of weak muscles due to increased reflex activity. Spasticity is currently measured clinically while the examiner passively stretches a muscle. However, the clinical method cannot differentiate resistance due to increased reflex activity from resistance due to muscle stiffness, which can develop over time in weakened muscles. The aim of this study was to evaluate the novel NeuroFlexor foot module, which was developed to quantify and distinguish nerve and muscle components of resistance during passive stretching of the lower limb muscles. By quantifying these factors, one can obtain more reliable information than the clinical examination allows. NeuroFlexor measurements in 15 patients in the chronic stage after stroke and 18 healthy individuals allowed the validity of the method to be evaluated by assessing the relationship with velocity of stretch and by simultaneously examining the reflex activity using surface electromyography. The reliability of NeuroFlexor measurements was studied by comparing repeated measurements. Finally, the study established normal NeuroFlexor values from 73 healthy individuals. The results suggest that the NeuroFlexor foot module may be a valid, reliable and easy-to-use objective method to quantify lower limb spasticity

    Impact of Intensive Gait Training With and Without Electromechanical Assistance in the Chronic Phase After Stroke–A Multi-Arm Randomized Controlled Trial With a 6 and 12 Months Follow Up

    No full text
    International audiencePalmcrantz et al. Electromechanical Gait Training Post Stroke compared to the Control group (Tukey HSD p = 0.022), and not between the HAL group and Conventional group (Tukey HSD p = 0.258) or the HAL-group and the Control group (Tukey HSD p = 0.447). There was also a significant decline in the Conventional group from post-intervention to 6 months follow up (p = 0.043). The best fitting model to predict outcome included initial balance (BBS), followed by stroke severity (NIHSS), and dependence in activity and participation (BI and MRS). Conclusion: Intensive conventional gait training induced significant improvements longterm after stroke while integrating treadmill based EAGT had no additional value in this study sample. The results may support cost effective evidence-based interventions for gait training long-term after stroke and further development of EAGT

    Recovery of Apraxia of Speech and Aphasia in Patients With Hand Motor Impairment After Stroke

    No full text
    International audienceObjective: Aphasia and apraxia of speech (AOS) after stroke frequently co-occur with a hand motor impairment but few studies have investigated stroke recovery across motor and speech-language domains. In this study, we set out to test the shared recovery hypothesis. We aimed to (1) describe the prevalence of AOS and aphasia in subacute stroke patients with a hand motor impairment and (2) to compare recovery across speech-language and hand motor domains. In addition, we also explored factors predicting recovery from AOS. Methods: Seventy participants with mild to severe paresis in the upper extremity were assessed; 50% of these (n = 35) had left hemisphere (LH) lesions. Aphasia, AOS and hand motor assessments and magnetic resonance imaging were conducted at 4 weeks (A1) and at 6 months (A2) after stroke onset. Recovery was characterized in 15 participants showing initial aphasia that also had complete follow-up data at 6 months. Results: All participants with AOS and/or aphasia had LH lesions. In LH lesioned, the prevalence of aphasia was 71% and of AOS 57%. All participants with AOS had aphasia; 80% of the participants with aphasia also had AOS. Recovery in aphasia (n = 15) and AOS (n = 12) followed a parallel pattern to that observed in hand motor impairment and recovery correlated positively across speech-language and motor domains. The majority of participants with severe initial aphasia and AOS showed a limited but similar amount of recovery across domains. Lesion volume did not correlate with results from behavioral assessments, nor with recovery. The initial aphasia score was the strongest predictor of AOS recovery. Conclusion: Our findings confirm the common occurrence of AOS and aphasia in left hemisphere stroke patients with a hand motor impairment. Recovery was similar across speech-language and motor domains, even in patients with severe impairment, supporting the shared recovery hypothesis and that similar brain recovery mechanisms are involved in speech-language and motor recovery post stroke. These observations contribute to the knowledge of AOS and its relation to motor and language functions and add information that may serve as a basis for future studies of post stroke recovery. Studies including neuroimaging and/or biological assays are required to gain further knowledge on shared brain recovery mechanisms

    Longitudinal changes in functional connectivity in speech motor networks in apraxia of speech after stroke

    No full text
    ObjectiveThe cerebral substrates of apraxia of speech (AOS) recovery remain unclear. Resting state fMRI post stroke can inform on altered functional connectivity (FC) within cortical language networks. Some initial studies report reduced FC between bilateral premotor cortices in patients with AOS, with lowest FC in patients with the most severe AOS. However, longitudinal FC studies in stroke are lacking. The aims of the present longitudinal study in early post stroke patients with AOS were (i) to compare connectivity strength in AOS patients to that in left hemisphere (LH) lesioned stroke patients without a speech-language impairment, (ii) to investigate the relation between FC and severity of AOS, aphasia and non-verbal oral apraxia (NVOA) and (iii) to investigate longitudinal changes in FC, from the subacute phase to the chronic phase to identify predictors of AOS recovery. MethodsFunctional connectivity measures and comprehensive speech-language assessments were obtained at 4 weeks and 6 months after stroke in nine patients with AOS after a LH stroke and in six LH lesioned stroke patients without speech-language impairment. Functional connectivity was investigated in a network for speech production: inferior frontal gyrus (IFG), anterior insula (aINS), and ventral premotor cortex (vPMC), all bilaterally to investigate signs of adaptive or maladaptive changes in both hemispheres. ResultsInterhemispheric vPMC connectivity was significantly reduced in patients with AOS compared to LH lesioned patients without speech-language impairment. At 6 months, the AOS severity was associated with interhemispheric aINS and vPMC connectivity. Longitudinal changes in FC were found in individuals, whereas no significant longitudinal change in FC was found at the group level. Degree of longitudinal AOS recovery was strongly associated with interhemispheric IFG connectivity strength at 4 weeks. ConclusionEarly interhemispheric IFG connectivity may be a strong predictor of AOS recovery. The results support the importance of interhemispheric vPMC connection in speech motor planning and severity of AOS and suggest that also bilateral aINS connectivity may have an impact on AOS severity. These findings need to be validated in larger cohorts
    corecore