16 research outputs found

    Force velocity profiling for athletes

    Get PDF
    The concept of force-velocity (FV) profiling is inspired by the fundamental properties of skeletal muscles, where there is an inverse relationship between force and velocity. The measurement of force and the corresponding velocity during varying loads have been conducted since the start of the 20th century. Due to rapid advances in technology, devices that can measure forces and velocities in a variety of movements have increased rapidly in recent years. As a result, FV profiling has gained popularity among coaches, athletes, and scientists as a tool for performance assessment and individualized training prescriptions. The purpose of this Ph.D. thesis was to investigate the use of forcevelocity profiling as a tool for performance assessment and individualized training prescriptions in athletes. To achieve this aim, three experimental studies were conducted, each addressing a specific research question. Study I aimed to assess the reliability and agreement of commonly used measurement equipment for evaluating force-velocity profiles in well-trained and elite athletes. Study II investigated the effectiveness of an individualized training approach based on FV-profiling on jumping performance in well-trained athletes. Lastly, Study III aimed to investigate whether a placebo effect is present when participants are told they are receiving "optimal training" compared to "control training." The hypothesis was that FV-variables obtained from different measurement equipment would not be consistent, and the reliability would depend on the equipment and procedures used. The thesis also hypothesized that individualized training based on FV-profiling would lead to greater improvements in jump height compared to traditional power training. Additionally, a placebo effect was anticipated when participants were informed, they were receiving "optimal training."publishedVersio

    Fysisk lek og selvkontroll - kan fysisk lek føre til bedre selvkontroll?

    Get PDF
    Problemstilling: Hensikten med denne oppgaven var å undersøke sammenhengen mellom lek og selvkontroll. Vil de som leker mer utvikle bedre selvkontroll? Metode: Populasjon er ungdom i alderen 18-22 år. Utvalget bestod av 57 ungdommer, fordelt på to idrettsklasser og en klasse fra VG3 studiespesialisering. Det ble brukt spørreskjema for kartlegging av motivasjon for lek nå, hvor mye man har lekt i oppveksten og selvkontroll. Det ble også målt selvkontroll med en oppmerksomhetstest. Resultat: Forsøket viste en sammenheng på R=0,36 mellom selvkontroll og fysisk lek. Det ble funnet sammenheng mellom hvor mye man har lekt i oppveksten og selvkontrollen. Konklusjon: Resultatene i denne oppgaven viser til at det er en sammenheng mellom fysisk lek og selvkontroll. Både hvor mye man leker nå og hvor mye man har lekt gjennom oppveksten viser seg å spille inn på selvkontrollen. Kombinert med tidligere forskning på lek, fysisk aktivitet og selvkontroll utgjør dette interessante resultater som kan forskes videre på

    Association Between Physical Performance Tests and External Load During Scrimmages in Highly Trained Youth Ice Hockey Players

    Get PDF
    Author's accepted manuscriptAccepted author manuscript version reprinted, by permission, from International Journal of Sports Physiology and Performance (IJSPP), 2023, 18(1): 47-54, https://doi.org/10.1123/ijspp.2022-0225. © Human Kinetics, Inc.Purpose: To investigate the relationship between physical performance tests and on-ice external load from simulated games (scrimmages) in ice hockey. Methods: A total of 14 players completed a physical performance test battery consisting of 30-m sprint test—run and 30-m sprint test—skate (including 10-m split times and maximum speed), countermovement jump, standing long jump, bench press, pull-ups, and trap bar deadlift and participated in 4 scrimmages. External load variables from scrimmages included total distance; peak speed; slow ( 24.0 km/h) speed skating distance; number of sprints; PlayerLoad™; number of high-intensity events (> 2.5 m/s); accelerations; decelerations; and changes of direction. Bayesian pairwise correlation analyses were performed to assess the relationship between physical performance tests and external load performance variables. Results: The results showed strong evidence (Bayes factor > 10) for associations between pull-ups and high-intensity events (τ = .61) and between maximum speed skate and peak speed (τ = .55). There was moderate evidence (Bayes factor >3 to <10) for 6 associations: both maximum speed skate (τ = .44) and countermovement jump (τ = .44) with sprint speed skating distance, countermovement jump with number of sprints (τ = .46), pull-ups with changes of direction (τ = .50), trap bar with peak speed (τ = .45), and body mass with total distance (τ = .49). Conclusion: This study found physical performance tests to be associated with some of the external load variables from scrimmages. Nevertheless, the majority of correlations did not display meaningful associations, possibly being influenced by the selection of physical performance tests.acceptedVersio

    In-season autoregulation of one weekly strength training session maintains physical and external load match performance in professional male football players

    Get PDF
    The aim of this study was to compare the effects of autoregulating strength training volume based on an objective (external load match performance) versus a subjective (self-selected) method in professional male football players. Sixteen players completed a 10-week strength training programme where the number of sets was regulated based on football match high-intensity running distance (HIR >19.8 km/h, AUTO, n = 7), or self-selected (SELF, n = 9). In addition to traditional physical performance assessments (30-m sprint, countermovement jump, leg-strength, and body composition), external load match performance was assessed with five matches in the beginning and in the end of the study period. Both groups performed ~ 1 weekly bout of ~ 6 sets in leg extensor exercises during the 10-week period, and maintained physical performance during the competitive season, with no group differences detected after the training period. Non-overlap of all pairs (NAP) analysis showed weak-to-moderate effects in external load match performance from before to after the study period, suggesting that players maintained or improved their performance. In conclusion, no group differences were observed, suggesting that both external load autoregulated and self-selected, low-volume in-season strength training maintained physical, and external load match performance in professional male football players.publishedVersio

    Should we individualize training based on force-velocity profiling to improve physical performance in athletes?

    Get PDF
    The present study aimed to examine the effectiveness of an individualized training program based on force-velocity (FV) profiling on jumping, sprinting, strength, and power in athletes. Forty national level team sport athletes (20 ± 4years, 83 ± 13 kg) from ice-hockey, handball, and soccer completed a 10-week training intervention. A theoretical optimal squat jump (SJ)-FV-profile was calculated from SJ with five different loads (0, 20, 40, 60, and 80 kg). Based on their initial FV-profile, athletes were randomized to train toward, away, or irrespective (balanced training) of their initial theoretical optimal FV-profile. The training content was matched between groups in terms of set x repetitions but varied in relative loading to target the different aspects of the FV-profile. The athletes performed 10 and 30 m sprints, SJ and countermovement jump (CMJ), 1 repetition maximum (1RM) squat, and a leg-press power test before and after the intervention. There were no significant group differences for any of the performance measures. Trivial to small changes in 1RM squat (2.9%, 4.6%, and 6.5%), 10 m sprint time (1.0%, −0.9%, and −1.7%), 30 m sprint time (0.9%, −0.6%, and −0.4%), CMJ height (4.3%, 3.1%, and 5.7%), SJ height (4.8%, 3.7%, and 5.7%), and leg-press power (6.7%, 4.2%, and 2.9%) were observed in the groups training toward, away, or irrespective of their initial theoretical optimal FV-profile, respectively. Changes toward the optimal SJ-FV-profile were negatively correlated with changes in SJ height (r = −0.49, p < 0.001). Changes in SJ-power were positively related to changes in SJ-height (r = 0.88, p < 0.001) and CMJ-height (r = 0.32, p = 0.044), but unrelated to changes in 10 m (r = −0.02, p = 0.921) and 30 m sprint time (r = −0.01, p = 0.974). The results from this study do not support the efficacy of individualized training based on SJ-FV profiling.publishedVersio

    Effectiveness of individualized training based on force–velocity profiling on physical function in older men

    Get PDF
    The study aimed to investigate the effectiveness of an individualized power training program based on force–velocity (FV) profiling on physical function, muscle morphology, and neuromuscular adaptations in older men. Forty-nine healthy men (68 ± 5 years) completed a 10-week training period to enhance muscular power. They were randomized to either a generic power training group (GPT) or an individualized power training group (IPT). Unlike generic training, individualized training was based on low- or high-resistance exercises, from an initial force–velocity profile. Lower-limb FV profile was measured in a pneumatic leg-press, and physical function was assessed as timed up-and-go time (TUG), sit-to-stand power, grip strength, and stair-climbing time (loaded [20kg] and unloaded). Vastus lateralis morphology was measured with ultrasonography. Rate of force development (RFD) and rate of myoelectric activity (RMA) were measured during an isometric knee extension. The GPT group improved loaded stair-climbing time (6.3 ± 3.8 vs. 2.3% ± 7.3%, p = 0.04) more than IPT. Both groups improved stair-climbing time, sit to stand, and leg press power, grip strength, muscle thickness, pennation angle, fascicle length, and RMA from baseline (p < 0.05). Only GPT increased loaded stair-climbing time and RFD (p < 0.05). An individualized power training program based on FV profiling did not improve physical function to a greater degree than generic power training. A generic power training approach combining both heavy and low loads might be advantageous through eliciting both force- and velocity-related neuromuscular adaptions with a concomitant increase in muscular power and physical function in older men.publishedVersio

    Strength and Power Testing of Athletes: A Multicenter Study of Test-Retest Reliability

    Get PDF
    Author's accepted manuscriptAccepted author manuscript version reprinted, by permission, from International Journal of Sports Physiology and Performance (IJSPP), 2022, 17 (7): 1103-1110, https://doi.org/10.1123/ijspp.2021-0558. © Human Kinetics, Inc.Purpose:This study examined the test–retest reliability of common assessments for measuring strength and power of the lowerbody in high-performing athletes.Methods:A total of 100 participants, including both male (n=83) and female (n=17) athletes(21 [4] y, 182 [9] cm, and 78 [12] kg), were recruited for this study, using a multicenter approach. The participants underwentphysical testing 4 times. Thefirst 2 sessions (1 and 2) were separated by∼1 week, followed by a period of 2 to 6 months, whereasthe last 2 sessions (3 and 4) were again separated by∼1 week. The test protocol consisted of squat jumps, countermovementjumps, jump and reach, 30-m sprint, 1-repetition-maximum squat, sprint cycling, and a leg-press test.Results:The typical error(%) ranged from 1.3% to 8.5% for all assessments. The change in means ranged from−1.5% to 2.5% for all assessments, whereasthe interclass correlation coefficient ranged from .85 to .97. The smallest worthwhile change (0.2 of baseline SD) ranged from1.2% to 5.0%. The ratio between the typical error (%) and the smallest worthwhile change (%) ranged from 0.5 to 1.2. Whenobserving the reliability across testing centers, considerable differences in reliability were observed (typical error [%] ratio: 0.44–1.44).Conclusions:Most of the included assessments can be used with confidence by researchers and coaches to measurestrength and power in athletes. Our results highlight the importance of controlling testing reliability at each testing center and notrelying on data from others, despite having applied the same protocol.acceptedVersio

    The Force-Velocity Profile for Jumping:What It Is and What It Is Not

    Get PDF
    Introduction: Force–velocity profiling has been proposed in the literature as a method to identify the overall mechanical characteristics of lower extremities. A force–velocity profile is obtained by plotting for jumps at different loads the effective work as a function of the average push-off velocity, fitting a straight line to the results, and extrapolating this line to find the theoretical maximum isometric force and unloaded shortening velocity. Here we investigated whether the force–velocity profile and its characteristics can be related to the intrinsic force–velocity relationship. Methods: We used simulation models of various complexity, ranging from a simple mass actuated by a linearly damped force to a planar musculoskeletal model comprising four segments and six muscle–tendon complexes. The intrinsic force–velocity relationship of each model was obtained by maximizing the effective work during isokinetic extension at different velocities. Results Several observations were made. First, at the same average velocity, less effective work can be done during jumping than during isokinetic lower extremity extension at this velocity. Second, the intrinsic relationship is curved; fitting a straight line and extrapolating it seem arbitrary. Third, the maximal isometric force and the maximal velocity corresponding to the profile are not independent. Fourth, they both vary with inertial properties of the system. Conclusions: For these reasons, we concluded that the force–velocity profile is specific for the task and is just what it is: the relationship between effective work and an arbitrary estimate of average velocity; it does not represent the intrinsic force–velocity relationship of the lower extremities.publishedVersio

    Validity of Force-Velocity Profiling Assessed With a Pneumatic Leg Press Device

    No full text
    Purpose: The aim of this study was to examine the concurrent validity of force–velocity (FV) variables assessed across 5 Keiser leg press devices. Methods: A linear encoder and 2 independent force plates (MuscleLab devices) were mounted on each of the 5 leg press devices. A total of 997 leg press executions, covering a wide range of forces and velocities, were performed by 14 participants (29 [7] y, 181 [5] cm, 82 [8] kg) across the 5 devices. Average and peak force, velocity, and power values were collected simultaneously from the Keiser and MuscleLab devices for each repetition. Individual FV profiles were fitted to each participant from peak and average force and velocity measurements. Theoretical maximal force, velocity, and power were deduced from the FV relationship. Results: Average and peak force and velocity had a coefficient of variation of 1.5% to 8.6%, near-perfect correlations (.994–.999), and a systematic bias of 0.7% to 7.1% when compared with reference measurements. Average and peak power showed larger coefficient of variations (11.6% and 17.2%), despite excellent correlations (.977 and .952), and trivial to small biases (3.9% and 8.4%). Extrapolated FV variables showed near-perfect correlations (.983–.997) with trivial to small biases (1.4%–11.2%) and a coefficient of variation of 1.4% to 5.9%. Conclusions: The Keiser leg press device can obtain valid measurements over a wide range of forces and velocities across different devices. To accurately measure power, theoretical maximal power calculated from the FV profile is recommended over average and peak power values from single repetitions, due to the lower random error observed for theoretical maximal power
    corecore