167 research outputs found

    Morphology, fluid Motion and Predation by the Scyphomedusa Aurelia Aurita

    Get PDF
    Although medusan predators play demonstrably important roles in a variety of marine ecosystems, the mechanics of prey capture and, hence, prey selection, have remained poorly defined. A review of the literature describing the commonly studied medusa Aurelia aurita (Linnaeus 1758) reveals no distinct patterns of prey selectivity and suggests that A. aurita is a generalist and feeds unselectively upon available zooplankton. We examined the mechanics of prey capture by A. aurita using video methods to record body and fluid motions. Medusae were collected between February and June in 1990 and 1991 from Woods Hole, Massachusetts and Narragansett Bay, Rhode Island, USA. Tentaculate A. aurita create fluid motions during swimming which entrain prey and bring them into contact with tentacles. We suggest that this mechanism dominates prey selection by A. aurita. In this case, we predict that medusae of a specific diameter will positively select prey with escape speeds slower than the flow velocities at their bell margins. Negatively selected prey escape faster than the medusan flow velocity draws them to capture surfaces. Faster prey will be captured by larger medusac because flow field velocity is a function of bell diameter. On the basis of prey escape velocities and flow field velocities of A. aurita with diameters of 0.8 to 7.1 cm, we predict that A. aurita will select zooplankton such as barnacle nauplii and some slow swimming hydromedusae, while faster copepods will be negatively selected

    Exploiting Anopheles responses to thermal, odour and visual stimuli to improve surveillance and control of malaria

    Get PDF
    Mosquito surveillance and control are at the heart of efforts to eliminate malaria, however, there remain significant gaps in our understanding of mosquito behaviour that impede innovation. We hypothesised that a combination of human-associated stimuli could be used to attract and kill malaria vectors more successfully than individual stimuli, and at least as well as a real human. To test this in the field, we quantified Anopheles responses to olfactory, visual and thermal stimuli in Burkina Faso using a simple adhesive trap. Traps baited with human odour plus high contrast visual stimuli caught more Anopheles than traps with odour alone, showing that despite their nocturnal habit, malaria vectors make use of visual cues in host-seeking. The best performing traps, however, combined odour and visual stimuli with a thermal signature in the range equivalent to human body temperature. When tested against a human landing catch during peak mosquito abundance, this “host decoy” trap caught nearly ten times the number of Anopheles mosquitoes caught by a human collector. Exploiting the behavioural responses of mosquitoes to the entire suite of host stimuli promises to revolutionise vector surveillance and provide new paradigms in disease control

    Molecular Dynamics Analysis Reveals Structural Insights into Mechanism of Nicotine N-Demethylation Catalyzed by Tobacco Cytochrome P450 Mono-Oxygenase

    Get PDF
    CYP82E4, a cytochrome P450 monooxygenase, has nicotine N-demethylase (NND) activity, which mediates the bioconversion of nicotine into nornicotine in senescing tobacco leaves. Nornicotine is a precursor of the carcinogen, tobacco-specific nitrosamine. CYP82E3 is an ortholog of CYP82E4 with 95% sequence identity, but it lacks NND activity. A recent site-directed mutagenesis study revealed that a single amino acid substitution, i.e., cysteine to tryptophan at the 330 position in the middle of protein, restores the NND activity of CYP82E3 entirely. However, the same amino acid change caused the loss of the NND activity of CYP82E4. To determine the mechanism of the functional turnover of the two molecules, four 3D structures, i.e., the two molecules and their corresponding cys–trp mutants were modeled. The resulting structures exhibited that the mutation site is far from the active site, which suggests that no direct interaction occurs between the two sites. Simulation studies in different biological scenarios revealed that the mutation introduces a conformation drift with the largest change at the F-G loop. The dynamics trajectories analysis using principal component analysis and covariance analysis suggests that the single amino acid change causes the opening and closing of the transfer channels of the substrates, products, and water by altering the motion of the F-G and B-C loops. The motion of helix I is also correlated with the motion of both the F-G loop and the B-C loop and; the single amino acid mutation resulted in the curvature of helix I. These results suggest that the single amino acid mutation outside the active site region may have indirectly mediated the flexibility of the F-G and B-C loops through helix I, causing a functional turnover of the P450 monooxygenase

    Static platelet adhesion, flow cytometry and serum TXB2 levels for monitoring platelet inhibiting treatment with ASA and clopidogrel in coronary artery disease: a randomised cross-over study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite the use of anti-platelet agents such as acetylsalicylic acid (ASA) and clopidogrel in coronary heart disease, some patients continue to suffer from atherothrombosis. This has stimulated development of platelet function assays to monitor treatment effects. However, it is still not recommended to change treatment based on results from platelet function assays. This study aimed to evaluate the capacity of a static platelet adhesion assay to detect platelet inhibiting effects of ASA and clopidogrel. The adhesion assay measures several aspects of platelet adhesion simultaneously, which increases the probability of finding conditions sensitive for anti-platelet treatment.</p> <p>Methods</p> <p>With a randomised cross-over design we evaluated the anti-platelet effects of ASA combined with clopidogrel as well as monotherapy with either drug alone in 29 patients with a recent acute coronary syndrome. Also, 29 matched healthy controls were included to evaluate intra-individual variability over time. Platelet function was measured by flow cytometry, serum thromboxane B<sub>2 </sub>(TXB<sub>2</sub>)-levels and by static platelet adhesion to different protein surfaces. The results were subjected to Principal Component Analysis followed by ANOVA, t-tests and linear regression analysis.</p> <p>Results</p> <p>The majority of platelet adhesion measures were reproducible in controls over time denoting that the assay can monitor platelet activity. Adenosine 5'-diphosphate (ADP)-induced platelet adhesion decreased significantly upon treatment with clopidogrel compared to ASA. Flow cytometric measurements showed the same pattern (r<sup>2 </sup>= 0.49). In opposite, TXB<sub>2</sub>-levels decreased with ASA compared to clopidogrel. Serum TXB<sub>2 </sub>and ADP-induced platelet activation could both be regarded as direct measures of the pharmacodynamic effects of ASA and clopidogrel respectively. Indirect pharmacodynamic measures such as adhesion to albumin induced by various soluble activators as well as SFLLRN-induced activation measured by flow cytometry were lower for clopidogrel compared to ASA. Furthermore, adhesion to collagen was lower for ASA and clopidogrel combined compared with either drug alone.</p> <p>Conclusion</p> <p>The indirect pharmacodynamic measures of the effects of ASA and clopidogrel might be used together with ADP-induced activation and serum TXB<sub>2 </sub>for evaluation of anti-platelet treatment. This should be further evaluated in future clinical studies where screening opportunities with the adhesion assay will be optimised towards increased sensitivity to anti-platelet treatment.</p

    Modular assembly of proteins on nanoparticles

    Get PDF
    Generally, the high diversity of protein properties necessitates the development of unique nanoparticle bio-conjugation methods, optimized for each different protein. Here we describe a universal bio-conjugation approach which makes use of a new recombinant fusion protein combining two distinct domains. The N-terminal part is Glutathione S-Transferase (GST) from Schistosoma japonicum, for which we identify and characterize the remarkable ability to bind gold nanoparticles (GNPs) by forming gold–sulfur bonds (Au–S). The C-terminal part of this multi-domain construct is the SpyCatcher from Streptococcus pyogenes, which provides the ability to capture recombinant proteins encoding a SpyTag. Here we show that SpyCatcher can be immobilized covalently on GNPs through GST without the loss of its full functionality. We then show that GST-SpyCatcher activated particles are able to covalently bind a SpyTag modified protein by simple mixing, through the spontaneous formation of an unusual isopeptide bond

    Contribution of Chondroitin Sulfate A to the Binding of Complement Proteins to Activated Platelets

    Get PDF
    Exposure of chondroitin sulfate A (CS-A) on the surface of activated platelets is well established. The aim of the present study was to investigate to what extent CS-A contributes to the binding of the complement recognition molecule C1q and the complement regulators C1 inhibitor (C1INH), C4b-binding protein (C4BP), and factor H to platelets.Human blood serum was passed over Sepharose conjugated with CS-A, and CS-A-specific binding proteins were identified by Western blotting and mass spectrometric analysis. C1q was shown to be the main protein that specifically bound to CS-A, but C4BP and factor H were also shown to interact. Binding of C1INH was dependent of the presence of C1q and then not bound to CS-A from C1q-depleted serum. The specific interactions observed of these proteins with CS-A were subsequently confirmed by surface plasmon resonance analysis using purified proteins. Importantly, C1q, C4BP, and factor H were also shown to bind to activated platelets and this interaction was inhibited by a CS-A-specific monoclonal antibody, thereby linking the binding of C1q, C4BP, and factor H to exposure of CS-A on activated platelets. CS-A-bound C1q was also shown to amplify the binding of model immune complexes to both microtiter plate-bound CS-A and to activated platelets.This study supports the concept that CS-A contributes to the binding of C1q, C4BP, and factor H to platelets, thereby adding CS-A to the previously reported binding sites for these proteins on the platelet surface. CS-A-bound C1q also seems to amplify the binding of immune complexes to activated platelets, suggesting a role for this molecule in immune complex diseases

    Functional analysis of genes involved in the biosynthesis of isoprene in Bacillus subtilis

    Get PDF
    In comparison to other bacteria Bacillus subtilis emits the volatile compound isoprene in high concentrations. Isoprene is the smallest representative of the natural product group of terpenoids. A search in the genome of B. subtilis resulted in a set of genes with yet unknown function, but putatively involved in the methylerythritol phosphate (MEP) pathway to isoprene. Further identification of these genes would give the possibility to engineer B. subtilis as a host cell for the production of terpenoids like the valuable plant-produced drugs artemisinin and paclitaxel. Conditional knock-out strains of putative genes were analyzed for the amount of isoprene emitted. Differences in isoprene emission were used to identify the function of the enzymes and of the corresponding selected genes in the MEP pathway. We give proof on a biochemical level that several of these selected genes from this species are involved in isoprene biosynthesis. This opens the possibilities to investigate the physiological function of isoprene emission and to increase the endogenous flux to the terpenoid precursors, isopentenyl diphosphate and dimethylallyl diphosphate, for the heterologous production of more complex terpenoids in B. subtilis

    Modern Subsurface Bacteria in Pristine 2.7 Ga-Old Fossil Stromatolite Drillcore Samples from the Fortescue Group, Western Australia

    Get PDF
    Several abiotic processes leading to the formation of life-like signatures or later contamination with actual biogenic traces can blur the interpretation of the earliest fossil record. In recent years, a large body of evidence showing the occurrence of diverse and active microbial communities in the terrestrial subsurface has accumulated. Considering the time elapsed since Archaean sedimentation, the contribution of subsurface microbial communities postdating the rock formation to the fossil biomarker pool and other biogenic remains in Archaean rocks may be far from negligible.In order to evaluate the degree of potential contamination of Archean rocks by modern microorganisms, we looked for the presence of living indigenous bacteria in fresh diamond drillcores through 2,724 Myr-old stromatolites (Tumbiana Formation, Fortescue Group, Western Australia) using molecular methods based on the amplification of small subunit ribosomal RNA genes (SSU rDNAs). We analyzed drillcore samples from 4.3 m and 66.2 m depth, showing signs of meteoritic alteration, and also from deeper "fresh" samples showing no apparent evidence for late stage alteration (68 m, 78.8 m, and 99.3 m). We also analyzed control samples from drilling and sawing fluids and a series of laboratory controls to establish a list of potential contaminants introduced during sample manipulation and PCR experiments. We identified in this way the presence of indigenous bacteria belonging to Firmicutes, Actinobacteria, and Alpha-, Beta-, and Gammaproteobacteria in aseptically-sawed inner parts of drillcores down to at least 78.8 m depth.The presence of modern bacterial communities in subsurface fossil stromatolite layers opens the possibility that a continuous microbial colonization had existed in the past and contributed to the accumulation of biogenic traces over geological timescales. This finding casts shadow on bulk analyses of early life remains and makes claims for morphological, chemical, isotopic, and biomarker traces syngenetic with the rock unreliable in the absence of detailed contextual analyses at microscale
    corecore