43 research outputs found

    Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes

    Get PDF
    Neuroblastoma is a childhood tumour of the peripheral sympathetic nervous system. The pathogenesis has for a long time been quite enigmatic, as only very few gene defects were identified in this often lethal tumour. Frequently detected gene alterations are limited to MYCN amplification (20%) and ALK activations (7%). Here we present a whole-genome sequence analysis of 87 neuroblastoma of all stages. Few recurrent amino-acid-changing mutations were found. In contrast, analysis of structural defects identified a local shredding of chromosomes, known as chromothripsis, in 18% of high-stage neuroblastoma. These tumours are associated with a poor outcome. Structural alterations recurrently affected ODZ3, PTPRD and CSMD1, which are involved in neuronal growth cone stabilization. In addition, ATRX, TIAM1 and a series of regulators of the Rac/Rho pathway were mutated, further implicating defects in neuritogenesis in neuroblastoma. Most tumours with defects in these genes were aggressive high-stage neuroblastomas, but did not carry MYCN amplifications. The genomic landscape of neuroblastoma therefore reveals two novel molecular defects, chromothripsis and neuritogenesis gene alterations, which frequently occur in high-risk tumours

    Chromosome 11q loss and MYCN amplification demonstrate synthetic lethality with checkpoint kinase 1 inhibition in neuroblastoma

    Get PDF
    Neuroblastoma is the most common extracranial solid tumor found in children and despite intense multi-modal therapeutic approaches, low overall survival rates of high-risk patients persist. Tumors with heterozygous loss of chromosome 11q and MYCN amplification are two genetically distinct subsets of neuroblastoma that are associated with poor patient outcome. Using an isogenic 11q deleted model system and high-throughput drug screening, we identify checkpoint kinase 1 (CHK1) as a potential therapeutic target for 11q deleted neuroblastoma. Further investigation reveals MYCN amplification as a possible additional biomarker for CHK1 inhibition, independent of 11q loss. Overall, our study highlights the potential power of studying chromosomal aberrations to guide preclinical development of novel drug targets and combinations. Additionally, our study builds on the growing evidence that DNA damage repair and replication stress response pathways offer therapeutic vulnerabilities for the treatment of neuroblastoma

    Implementation of paediatric precision oncology into clinical practice: The Individualized Therapies for Children with cancer program ‘iTHER’

    Get PDF
    iTHER is a Dutch prospective national precision oncology program aiming to define tumour molecular profiles in children and adolescents with primary very high-risk, relapsed, or refractory paediatric tumours. Between April 2017 and April 2021, 302 samples from 253 patients were included. Comprehensive molecular profiling including low-coverage whole genome sequencing (lcWGS), whole exome sequencing (WES), RNA sequencing (RNA-seq), Affymetrix, and/or 850k methylation profiling was successfully performed for 226 samples with at least 20% tumour content. Germline pathogenic variants were identified in 16% of patients (35/219), of which 22 variants were judged causative for a cancer predisposition syndrome. At least one somatic alteration was detected in 204 (90.3%), and 185 (81.9%) were considered druggable, with clinical priority very high (6.1%), high (21.3%), moderate (26.0%), intermediate (36.1%), and borderline (10.5%) priority. iTHER led to revision or refinement of diagnosis in 8 patients (3.5%). Temporal heterogeneity was observed in paired samples of 15 patients, indicating the value of sequential analyses. Of 137 patients with follow-up beyond twelve months, 21 molecularly matched treatments were applied in 19 patients (13.9%), with clinical benefit in few. Most relevant barriers to not applying targeted therapies included poor performance status, as well as limited access to drugs within clinical trial. iTHER demonstrates the feasibility of comprehensive molecular profiling across all ages, tumour types and stages in paediatric cancers, informing of diagnostic, prognostic, and targetable alterations as well as reportable germline variants. Therefore, WES and RNA-seq is nowadays standard clinical care at the Princess Máxima Center for all children with cancer, including patients at primary diagnosis. Improved access to innovative treatments within biology-driven combination trials is required to ultimately improve survival

    Implementation of paediatric precision oncology into clinical practice: The Individualized Therapies for Children with cancer program ‘iTHER’

    Get PDF
    iTHER is a Dutch prospective national precision oncology program aiming to define tumour molecular profiles in children and adolescents with primary very high-risk, relapsed, or refractory paediatric tumours. Between April 2017 and April 2021, 302 samples from 253 patients were included. Comprehensive molecular profiling including low-coverage whole genome sequencing (lcWGS), whole exome sequencing (WES), RNA sequencing (RNA-seq), Affymetrix, and/or 850k methylation profiling was successfully performed for 226 samples with at least 20% tumour content. Germline pathogenic variants were identified in 16% of patients (35/219), of which 22 variants were judged causative for a cancer predisposition syndrome. At least one somatic alteration was detected in 204 (90.3%), and 185 (81.9%) were considered druggable, with clinical priority very high (6.1%), high (21.3%), moderate (26.0%), intermediate (36.1%), and borderline (10.5%) priority. iTHER led to revision or refinement of diagnosis in 8 patients (3.5%). Temporal heterogeneity was observed in paired samples of 15 patients, indicating the value of sequential analyses. Of 137 patients with follow-up beyond twelve months, 21 molecularly matched treatments were applied in 19 patients (13.9%), with clinical benefit in few. Most relevant barriers to not applying targeted therapies included poor performance status, as well as limited access to drugs within clinical trial. iTHER demonstrates the feasibility of comprehensive molecular profiling across all ages, tumour types and stages in paediatric cancers, informing of diagnostic, prognostic, and targetable alterations as well as reportable germline variants. Therefore, WES and RNA-seq is nowadays standard clinical care at the Princess Máxima Center for all children with cancer, including patients at primary diagnosis. Improved access to innovative treatments within biology-driven combination trials is required to ultimately improve survival

    Targeted BIRC5 silencing using YM155 causes cell death in neuroblastoma cells with low ABCB1 expression

    No full text
    The BIRC5 (Survivin) gene is located at chromosome 17q in the region that is frequently gained in high risk neuroblastoma. BIRC5 is strongly over expressed in neuroblastoma tumour samples, which correlates to a poor prognosis. We recently validated BIRC5 as a potential therapeutic target by showing that targeted knock down with shRNA's triggers an apoptotic response through mitotic catastrophe. We now tested YM155, a novel small molecule selective BIRC5 suppressant that is currently in phase I/II clinical trials. Drug response curves showed IC50 values in the low nM range (median: 35 nM, range: 0.5->10,000 nM) in a panel of 23 neuroblastoma cell lines and four TIC-lines, which resulted from an apoptotic response. Nine out of 23 cell lines were relatively resistant to YM155 with IC50 values >200 nM, although in the same cells shRNA mediated knock down of BIRC5 caused massive apoptosis. Analysis of differentially expressed genes between five most sensitive and five most resistant cell lines using Affymetrix mRNA expression data revealed ABCB1 (MDR1) as the most predictive gene for resistance to YM155. Inhibition of the multidrug resistance pump ABCB1 with cyclosporine or knockdown with shRNA prior to treatment with YM155 demonstrated that cell lines with ABCB1 expression became 27-695 times more sensitive to YM155 treatment. We conclude that most neuroblastoma cell lines are sensitive to YM155 in the low nM range and that resistant cells can be sensitised by ABCB1 inhibitors. Therefore YM155 is a promising novel compound for treatment of neuroblastoma with low ABCB1 expression. (C) 2011 Elsevier Ltd. All rights reserve

    Targeted BCL2 inhibition effectively inhibits neuroblastoma tumour growth

    Get PDF
    Genomic aberrations of key regulators of the apoptotic pathway have hardly been identified in neuroblastoma. We detected high BCL2 mRNA and protein levels in the majority of neuroblastoma tumours by Affymetrix expression profiling and Tissue Micro Array analysis. This BCL2 mRNA expression is strongly elevated compared to normal tissues and other malignancies. Most neuroblastoma cell lines lack this high BCL2 expression. Only two neuroblastoma cell lines (KCNR and SJNB12) show BCL2 expression levels representative for neuroblastoma tumours. To validate BCL2 as a therapeutic target in neuroblastoma we employed lentivirally mediated shRNA. Silencing of BCL2 in KCNR and SJNB12 resulted in massive apoptosis, while cell lines with low BCL2 expression were insensitive. Identical results were obtained by treatment of the neuroblastoma cell lines with the small molecule BCL2 inhibitor ABT263, which is currently being clinically evaluated. Combination assays of ABT263 with most classical cytostatics showed strong synergistic responses. Subcutaneous xenografts of a neuroblastoma cell line with high BCL2 expression in NMRI nu/nu mice showed a strong response to ABT263. These findings establish BCL2 as a promising drug target in neuroblastoma and warrant further evaluation of ABT263 and other BCL2 inhibiting drugs. (C) 2012 Elsevier Ltd. All rights reserved

    RaS–MAPK pathway-driven tumor progression is associated with loss of CIC and other genomic aberrations in neuroblastoma

    No full text
    Mutations affecting the RAS–MAPK pathway frequently occur in relapsed neuroblastoma tumors, which suggests that activation of this pathway is associated with a more aggressive phenotype. To explore this hypothesis, we generated several model systems to define a neuroblastoma RAS–MAPK pathway signature. Activation of this pathway in primary tumors indeed correlated with poor survival and was associated with known activating mutations in ALK and other RAS–MAPK pathway genes. Integrative analysis showed that mutations in PHOX2B, CIC, and DMD were also associated with an activated RAS–MAPK pathway. Mutation of PHOX2B and deletion of CIC in neuroblastoma cell lines induced activation of the RAS–MAPK pathway. This activation was independent of phosphorylated ERK in CIC knockout systems. Furthermore, deletion of CIC caused a significant increase in tumor growth in vivo. These results show that the RAS–MAPK pathway is involved in tumor progression and establish CIC as a powerful tumor suppressor that functions downstream of this pathway in neuroblastoma. Significance: This work identifies CIC as a powerful tumor suppressor affecting the RAS-MAPK pathway in neuroblastoma and reinforces the importance of mutation-driven activation of this pathway in cancer

    Combined targeting of the p53 and pRb pathway in neuroblastoma does not lead to synergistic responses

    No full text
    BACKGROUND: Despite intensive treatment protocols and recent advances, neuroblastomas still account for approximately 15% of all childhood cancer deaths. In contrast with adult cancers, p53 pathway inactivation in neuroblastomas is rarely caused by p53 mutation but rather by altered MDM2 or p14ARF expression. Moreover, neuroblastomas are characterised by high proliferation rates, frequently triggered by pRb pathway dysfunction due to aberrant expression of cyclin D1, CDK4 or p16INK4a. Simultaneous disturbance of these pathways can occur via co-amplification of MDM2 and CDK4 or homozygous deletion of CDKN2A, which encodes both p14ARF and p16INK4a. METHODS AND RESULTS: We examined whether both single and combined inhibition of MDM2 and CDK4/6 is effective in reducing neuroblastoma cell viability. In our panel of ten cell lines with a spectrum of aberrations in the p53 and pRb pathway, idasanutlin and abemaciclib were the most potent MDM2 and CDK4/6 inhibitors, respectively. No correlation was observed between the genetic background and response to the single inhibitors. We confirmed this lack of correlation in isogenic systems overexpressing MDM2 and/or CDK4. In addition, combined inhibition did not result in synergistic effects. Instead, abemaciclib diminished the pro-apoptotic effect of idasanutlin, leading to slightly antagonistic effects. In vivo treatment with idasanutlin and abemaciclib led to reduced tumour growth compared with single drug treatment, but no synergistic response was observed. CONCLUSION: We conclude that p53 and pRb pathway aberrations cannot be used as predictive biomarkers for neuroblastoma sensitivity to MDM2 and/or CDK4/6 inhibitors. Moreover, we advise to be cautious with combining these inhibitors in neuroblastomas

    Combined targeting of the p53 and pRb pathway in neuroblastoma does not lead to synergistic responses

    Get PDF
    BACKGROUND: Despite intensive treatment protocols and recent advances, neuroblastomas still account for approximately 15% of all childhood cancer deaths. In contrast with adult cancers, p53 pathway inactivation in neuroblastomas is rarely caused by p53 mutation but rather by altered MDM2 or p14ARF expression. Moreover, neuroblastomas are characterised by high proliferation rates, frequently triggered by pRb pathway dysfunction due to aberrant expression of cyclin D1, CDK4 or p16INK4a. Simultaneous disturbance of these pathways can occur via co-amplification of MDM2 and CDK4 or homozygous deletion of CDKN2A, which encodes both p14ARF and p16INK4a. METHODS AND RESULTS: We examined whether both single and combined inhibition of MDM2 and CDK4/6 is effective in reducing neuroblastoma cell viability. In our panel of ten cell lines with a spectrum of aberrations in the p53 and pRb pathway, idasanutlin and abemaciclib were the most potent MDM2 and CDK4/6 inhibitors, respectively. No correlation was observed between the genetic background and response to the single inhibitors. We confirmed this lack of correlation in isogenic systems overexpressing MDM2 and/or CDK4. In addition, combined inhibition did not result in synergistic effects. Instead, abemaciclib diminished the pro-apoptotic effect of idasanutlin, leading to slightly antagonistic effects. In vivo treatment with idasanutlin and abemaciclib led to reduced tumour growth compared with single drug treatment, but no synergistic response was observed. CONCLUSION: We conclude that p53 and pRb pathway aberrations cannot be used as predictive biomarkers for neuroblastoma sensitivity to MDM2 and/or CDK4/6 inhibitors. Moreover, we advise to be cautious with combining these inhibitors in neuroblastomas
    corecore