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Abstract Background: Despite intensive treatment protocols and recent advances, neuro-

blastomas still account for approximately 15% of all childhood cancer deaths. In contrast with

adult cancers, p53 pathway inactivation in neuroblastomas is rarely caused by p53

mutation but rather by altered MDM2 or p14ARF expression. Moreover, neuroblastomas

are characterised by high proliferation rates, frequently triggered by pRb pathway dysfunction

due to aberrant expression of cyclin D1, CDK4 or p16INK4a. Simultaneous disturbance of

these pathways can occur via co-amplification of MDM2 and CDK4 or homozygous deletion

of CDKN2A, which encodes both p14ARF and p16INK4a.

Methods and results: We examined whether both single and combined inhibition of MDM2

and CDK4/6 is effective in reducing neuroblastoma cell viability. In our panel of ten cell lines

with a spectrum of aberrations in the p53 and pRb pathway, idasanutlin and abemaciclib were

the most potent MDM2 and CDK4/6 inhibitors, respectively. No correlation was observed be-

tween the genetic background and response to the single inhibitors. We confirmed this lack of

correlation in isogenic systems overexpressing MDM2 and/or CDK4. In addition, combined

inhibition did not result in synergistic effects. Instead, abemaciclib diminished the pro-

apoptotic effect of idasanutlin, leading to slightly antagonistic effects. In vivo treatment with

idasanutlin and abemaciclib led to reduced tumour growth compared with single drug treat-

ment, but no synergistic response was observed.

Conclusion: We conclude that p53 and pRb pathway aberrations cannot be used as predictive

biomarkers for neuroblastoma sensitivity to MDM2 and/or CDK4/6 inhibitors. Moreover, we
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advise to be cautious with combining these inhibitors in neuroblastomas.

ª 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Neuroblastomas account for approximately 15% of all

childhood cancer deaths [1]. Using an intensive treat-

ment protocol, which includes high-dose multi-agent

chemotherapy, complete remission is nowadays ach-

ieved in many high-risk patients. Nevertheless, up to

60% of them will eventually relapse and succumb to the
disease due to the treatment-resistant nature of these

relapse tumours [2]. Similar to many other tumours,

neuroblastomas are characterised by high proliferation

rates, making the cell cycle and its regulation an

attractive therapeutic target. The pRb and p53 pathways

are essential in this process by regulating cell cycle

progression and cell cycle arrest or apoptosis,

respectively.
Unlike many adult tumours, neuroblastomas are

known to have low frequencies of inactivating muta-

tions in TP53 [3]. However, p53 functionality can be

disturbed by aberrant expression of upstream proteins,

most importantly the E3 ubiquitin-protein ligase

MDM2. Overexpression of MDM2 has been described

in up to 53% of the patients [4], whereas gains and

amplifications occur at lower frequencies (19% and 13%,
respectively) [5,6]. MDM2 inactivates p53 by blocking

its transcriptional activity, stimulating proteasomal

degradation and inhibiting its translation [7]. MDM2

and p53 form a negative feedback loop, as MDM2 is

one of p53’s transcriptional targets.

The pRb pathway, on the other hand, is disturbed by

high cyclin D1 mRNA levels in 67% of the patients [8].

Overexpression, amplification or gain of CDK4 also
occur in up to 5% of neuroblastomas [9,10]. Cyclin D1

forms an activating complex with CDK4, enabling

phosphorylation of Rb protein. This phosphorylated

form is no longer able to bind and thereby inactivate the

transcription factor E2F, which then stimulates the

expression of G1/S phase-promoting genes.

Interestingly, MDM2 (12q15) and CDK4 (12q14.1)

are located in close proximity to each other. Although
rare, co-amplification of these genes has been reported

as a recurrent event in neuroblastomas, with higher

frequencies in relapse tumours [11e13]. Other aberra-

tions that affect both pathways are those in CDKN2A,

encoding both p14ARF (which blocks the binding of

MDM2 to p53) and p16INK4a (which inhibits the

CDK4-cyclin D1 complex). Homozygous deletions of

CDKN2A are infrequent in primary neuroblastomas but
occur in up to 11% of relapse tumours [14].
Recurrent findings of (co-occurring) p53 and pRb

pathway disturbances in neuroblastomas let us to
hypothesise that these patients might benefit from drugs

targeting those pathways. We used the MDM2 in-

hibitors idasanutlin, SAR405838 and HDM-201, which

occupy the p53 binding pocket of MDM2, thereby

preventing p53 degradation [15]. To target the pRb

pathway, we used the three different CDK4/6 inhibitors

(palbociclib, ribociclib and abemaciclib) that are

currently approved for adult malignancies and tested in
paediatric patients. These inhibitors bind to the ATP

binding pocket of CDK4 and CDK6 [16], thereby

inhibiting the ability of the CDK4-cyclin D1 complex to

phosphorylate pRb. Since MDM2 and CDK4 are co-

amplified in a subset of patients, we hypothesised that

targeting both pathways might be of added value in the

treatment of high-stage neuroblastoma.

Here, we tested MDM2 and CDK4/6 inhibitors in a
panel of neuroblastoma cell lines representing the clini-

cally observed p53 and pRb pathway aberrations, as

well as in isogenic MDM2 and/or CDK4 overexpression

systems, to examine whether p53 and pRb pathway

disturbances act as predictive biomarkers for drug

sensitivity. Given the fact that combination therapies are

often more effective and can hamper the development of

resistance mechanisms [17,18], we also studied simulta-
neous inhibition of these pathways, both in vitro and

in vivo.

2. Material and methods

2.1. Cell culture

Cell lines were obtained from the American Type Cul-

ture Collection (SKNSH, SKNAS and SKNBE) or from

historic collaborations, and their identity was validated
by short tandem repeat analysis. Cells (Fig. 1a) were

cultured in Dulbecco’s Modified Eagle Medium

(Thermo Fisher Scientific, #41965), supplemented with

10% fetal bovine serum, 2 mM L-glutamine, 1% non-

essential amino acids, 100 U/mL penicillin and

100 mg/mL streptomycin. Cells were grown at 37 �C and

5% CO2 and tested for mycoplasma infection every six

weeks.

2.2. Cell viability assay

For single compound testing, cells were seeded in trip-

licates in a 96-well plate at a density of

http://creativecommons.org/licenses/by-nc-nd/4.0/
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2000e20,000 cells per well, depending on the cell line.

Cells were given 24 h to attach and subsequently treated

with the targeted compound using a five-fold concen-

tration range from 0.64 nM to 10 mM. For combination

testing, 400e8000 cells were seeded in duplicates in a

384-well plate (for Shep2, 2000 cells were seeded in a 96-

well plate). Inhibitors (Supplementary Table 1) were

added in a matrix of five-fold concentration ranges from
0.128 nM to 50 mM using the D300e Digital Dispenser

(TECAN). After 72 h, cell viability was measured using

the 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium

(MTT) assay [19].
2.3. Xenograft experiments

Ethical approval was obtained under project

number AVD3990020173068, study protocol

PMC.63.3068.1901. NGP neuroblastoma cells (5 � 106)

were xenografted into both flanks of three Naval Med-
ical Research Institute (NMRI) nu/nu mice at 5e7

weeks of age (obtained from Charles River). Tumour

size was monitored twice a week by calliper measure-

ments and determined using the formula (p/6)*d3. Once

tumours reached 1000 mm3 in size, tumour pieces were

xenotransplanted into recipient mice. Daily oral treat-

ment started once tumours reached a size of 250 mm3.

Treatment groups (n Z 6 or 7 mice per group)
were idasanutlin (25 mg/kg) þ vehicle abemaciclib,

abemaciclib (50 mg/kg) þ vehicle idasanutlin, a combi-

nation of abemaciclib and idasanutlin or the appropriate

vehicles (Supplementary Table 2). Animals were
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average of two replicates and error bars indicate the standard error of

CDK4/6 inhibitor treatment. Cell lines were grouped depending on the
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tumour volumes exceeded 2000 mm3.

Plasmid generation, virus production and generation

of overexpression cell lines, Western blot analysis and

cell cycle analysis are described in the supplementary

material and methods.
3. Results

In vitro efficacies of MDM2 inhibitors idasanutlin
(RG7388) and SAR405838 were studied in a panel of

ten neuroblastoma cell lines with different genetic

backgrounds (Fig. 1a). Lowest IC50 values were found

for idasanutlin with a range from 13 nM to 309 nM for

wildtype p53 cell lines (Supplementary Fig. 1a). IC50

values exceeded 10 mM for p53 mutant cell lines SKNAS

and SKNBE, confirming that MDM2 inhibitors are

dependent on functional p53 [15]. No correlations were
observed between aberrations that should lead to higher

MDM2 activity (i.e. MDM2 amplification and homo-

zygous CDKN2A deletion) and compound sensitivity

(Fig. 1b and c and Supplementary Fig. 1a).

Next, similar experiments were performed using

CDK4/6 inhibitors palbociclib, ribociclib (LEE011) and

abemaciclib (LY2835219). In accordance with previous

reports [16], we found that abemaciclib was the most
potent inhibitor, with IC50 values ranging from 4 nM to

8913 nM (Supplementary Fig. 1b). We did not see a

correlation between cells with expected higher activity of

CDK4, caused by its amplification or CDKN2A loss,
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and compound sensitivity (Fig. 1d and e and

Supplementary Fig. 1b).

To further examine this lack of correlation, we

established stable doxycycline-inducible overexpression

of MDM2 and/or CDK4 in CHP134 (Fig. 2a) and

treated these cells with the same inhibitors, including the
additional MDM2 inhibitor HDM-201. IC50 values

were not substantially different when MDM2 and/or

CDK4 was overexpressed (Fig. 2bed), further indi-

cating that these expression levels do not predict sensi-

tivity to MDM2 or CDK4/6 inhibitors.

As MDM2 and CDK4 amplifications can occur

together (cell lines NGP and TR14) and homozygous

deletions of CDKN2A affect both pathways (Shep2 and
Lan6 cells), we were interested if simultaneous inhibition

would be beneficial. We treated our panel of cell lines for

72 h with different concentrations of idasanutlin and

abemaciclib (Fig. 3a and Supplementary Fig. 2) and

calculated Bliss independence (BI) values as a measure

of synergy. BI values were variable between cell lines,

despite their genetic backgrounds (Fig. 3b and

Supplementary Fig. 3). Nevertheless, BI values indicate
an additive to slightly antagonistic effect in most cell

lines, with TR14 (MDM2/CDK4-amplified) and Lan6

(CDKN2A loss) showing highest levels of antagonism.

To investigate whether first arresting the cell cycle and

then stimulating apoptosis would alter the response, we

delayed idasanutlin treatment with 24 h. However, this

did not result in substantial differences in cell viability or

BI values (Supplementary Fig. 4).
To further investigate the adverse effect, we per-

formed cell cycle analyses using propidium

iodide staining in combination with flow cytometry in

CHP134 and NGP cells treated with idasanutlin and/or

abemaciclib. As expected, idasanutlin and abemaciclib

both induced G1 arrest (Fig. 4a). In NGP, which con-
tains the co-amplification, this cell cycle arrest seemed to

be achieved at lower doses. Both compounds also

induced apoptosis, independent of MDM2 and CDK4

status, but higher sub-G1 fractions were observed after

idasanutlin treatment (Fig. 4b). However, when cells

were treated with both compounds simultaneously, the

apoptotic fraction was smaller compared with treatment

with idasanutlin alone. Unexpectedly, this effect seemed
to be more pronounced in NGP cells. Increased protein

levels of PARP and cleaved caspase 3 support the in-

duction of apoptosis after idasanutlin treatment and the

adverse effect when combined with CDK4/6 inhibition

(Fig. 4c). Both single compound treatments led to a

reduction of Ser780-phophorylated pRb, while idasa-

nutlin treatment additionally induced p53 and p21

expression, confirming the known mechanism of actions
of idasanutlin and abemaciclib. The enhanced expres-

sion of p53 upon inhibition with the highest concen-

tration of idasanutlin seemed to be somewhat abolished

when combined with abemaciclib. Moreover, MDM2

expression was upregulated and pRb phosphorylation

slightly diminished upon combination treatment. These

effects were again most prominent in MDM2/CDK4-

amplified NGP cells. Together, these data suggest that
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abemaciclib tempers the pro-apoptotic effect of

idasanutlin.

To test if this adverse effect would also be seen

in vivo, we established a xenograft model by injecting

NGP cells subcutaneously into NMRI nu/nu mice. Once

the tumours reached a size of 250 mm3, 28-day treat-

ment with either 25 mg/kg idasanutlin, 50 mg/kg abe-

maciclib or both started. All treatments were well
tolerated. Idasanutlin monotherapy resulted in diverse

reactions, ranging from complete regression to tumour

progression comparable with vehicle-treated tumours

(average tumour growth on day 28 was 158% versus

470% in the vehicle group) (Fig. 5 and Supplementary

Fig. 5). Abemaciclib slowed down tumour growth

compared with vehicle-treated animals, but tumours

were still progressing (average tumour growth 220%).
Combined treatment led to stable tumour sizes in all six

animals, a response comparable to stable disease, but no

tumour regression (average tumour growth 14%). Thus,

combining idasanutlin and abemaciclib resulted in

smaller average tumour sizes than either targeted com-

pound alone. However, average tumour sizes are higher

than expected based on an additive BI value for most

time points, showing that there is no synergistic effect
in vivo (Fig. 5a). Instead, the combination shows an
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additive to slightly antagonistic effect in mice, as was

observed earlier in cell lines.
4. Discussion

In the era of precision medicine, one of the main focuses

is finding biomarkers for specific targeted drugs. Besides

the fact that drug development is still mainly focused on

adult conditions, the identification of biomarkers in

paediatric cancer is hampered by small patient numbers,
with even smaller genetic subpopulations. Multi-

national initiatives, such as the Innovative Therapies

for Children with Cancer (ITCC) and the Neuroblas-

toma New Drug Development Strategy (NDDS), which

focus on accelerating paediatric drug development, are

essential in this process [20,21]. MDM2 and CDK4/6

inhibitors were amongst the targeted drugs selected by

the NDDS [21,22]. To prevent further delay by (clinical)
studies that are unlikely to be effective, it is pivotal to

also publish negative findings.

Here, we examined whether MDM2 and CDK4

amplification or homozygous CDKN2A deletions can be

used as predictive biomarkers of response for MDM2

and/or CDK4/6 inhibitors in neuroblastoma.
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Surprisingly, we did not find a correlation between the

genetic background of neuroblastoma cells and their

sensitivity to the drugs. The lack of correlation could be

confirmed in an isogenic overexpression system. More-
over, we showed that idasanutlin and abemaciclib do

not act synergistically. Instead, CDK4/6 inhibitor abe-

maciclib diminishes the pro-apoptotic effect of MDM2

inhibitor idasanutlin.

Previously, contradicting results were reported

regarding a correlation between MDM2 expression

levels and MDM2 inhibitor sensitivity in different

tumour types [23e25]. Our results are in line with
observations by Van Maerken et al. [26] and Chen et al.

[27], showing that this correlation was absent for neu-

roblastoma cells. Several mechanisms that might influ-

ence MDM2 inhibitor sensitivity have been described.
First, the relative expression of different splice forms of

MDM2 and its homologue MDMX may determine the

response [28,29]. MDM2 amplification might result in

expression of MDM2 inhibitor-resistant splice variants

[30]. Secondly, other biomarkers, such as MYCN, might

determine sensitivity to MDM2 inhibition [27,31]. In

our study, we did indeed see a non-significant trend of

higher sensitivity in MYCN-amplified lines, which might
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result from direct transcriptional regulation of p53 by

MYCN [32]. Lastly, controversial results about the

correlation between p14ARF status and MDM2 inhibi-

tor efficacy were reported [26,31]. In our study, cell lines

with homozygous CDKN2A deletions were among the

more resistant ones, but there was no clear correlation

with CDKN2A status. Despite several undertakings to

find a biomarker for MDM2 inhibitor response, up to
this date, the only clear marker is p53 [33]. Acquired

TP53 mutations might also explain the variable re-

sponses within our group of idasanutlin-treated mice

and resistance in one of the tumours [18].

For CDK4/6 inhibitors, varying responses, ranging

from a correlation with CDK4 levels to resistance, have

been reported across different malignancies [34e37].

p16INK4a loss was previously associated with both
increased sensitivity and resistance [38,39]. In our study,

overexpression of CDK4 did not change sensitivity to

CDK4/6 inhibitors. One of the potential mechanisms

behind this is the overexpression of cyclin E upon

CDK4/6 inhibition [17]. Cyclin E, together with CDK2,

is able to phosphorylate pRb, serving as an alternative

route into S phase. Alternatively, Guiley et al [39].

showed that CDK4/6 inhibitors are unable to bind to
CDK4-cyclin D1 complexes that have active p27 bound

to it. Instead, they mainly bind to catalytically non-

functional CDK4 monomers, and the authors suggest

that CDK4/6 inhibition indirectly induces cell cycle ar-

rest by lowering the abundance of cyclin A or increasing

the inhibition of CDK2-cyclin E complexes by p21. This

indirect effect might be unrelated to the amount of

CDK4 and could therefore explain the absence of a
correlation between CDK4 levels and compound

sensitivity.

To our knowledge, this is the first study using the

combination of idasanutlin and abemaciclib, but the

approach to simultaneously target MDM2 and CDK4 is

not unique. Synergistic effects were obtained in
neuroblastoma by combining nutlin-3 (an older gener-

ation MDM2 inhibitor) with the pan-CDK inhibitor

seliciclib [40], possibly via the inhibition of CDK2 and

CDK9, as well as in liposarcoma and melanoma by

combining MDM2 inhibition with palbociclib [41,42].

On the contrary, an antagonistic effect was found in

sarcoma cells [43]. The two inhibited pathways are

interconnected in several ways, which could explain the
absence of synergism. Sriraman et al. found that the

CDK4-cyclin D1 complex can bind to p53, which is

essential for transcription of p53 target genes [43].

CDK4/6 inhibitors might block this interaction and

counteract the effect of MDM2 inhibition. Moreover,

MDM2 inhibition induces expression of cyclin D1 and

cyclin E, which could contribute to cells escaping cell

cycle arrest despite CDK4/6 inhibition [29]. Another
layer of complexness is added by the observation that

p53 pathway activation results in upregulation of p27

[44], which can either inhibit CDK2-cyclin E or form the

resistant CDK4-cyclin D1-p27 complexes [39]. In these

complex and intertwined pathways, protein expression,

interactions and turnover levels seem to determine the

fate of the cell. As a consequence, it is difficult to

pinpoint the exact mechanism responsible for the lack of
synergism we observed.

In conclusion, our results contradict the common

belief and rationale that inhibition of an overexpressed

oncoprotein results in higher compound sensitivity [45].

We showed that MDM2 and CDK4 amplifications, as

well as homozygous CDKN2A deletions, have low po-

tential as predictive biomarkers of response to MDM2

and CDK4/6 inhibitors in neuroblastoma. Further
research should focus on finding biomarkers for these

inhibitors, as well as on finding better treatment options

for patients with p53 and pRb pathway alterations.

Based on the lack of synergism observed in our study,

we advise to be cautious with the combined inhibition of

MDM2 and CDK4 in patients with neuroblastoma.
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