7 research outputs found

    Peripheral immune circadian variation, synchronisation and possible dysrhythmia in established type 1 diabetes

    Get PDF
    Aims/hypothesis: The circadian clock influences both diabetes and immunity. Our goal in this study was to characterise more thoroughly the circadian patterns of immune cell populations and cytokines that are particularly relevant to the immune pathology of type 1 diabetes and thus fill in a current gap in our understanding of this disease. Methods: Ten individuals with established type 1 diabetes (mean disease duration 11 years, age 18-40 years, six female) participated in a circadian sampling protocol, each providing six blood samples over a 24 h period. Results: Daily ranges of population frequencies were sometimes large and possibly clinically significant. Several immune populations, such as dendritic cells, CD4 and CD8 T cells and their effector memory subpopulations, CD4 regulatory T cells, B cells and cytokine IL-6, exhibited statistically significant circadian rhythmicity. In a comparison with historical healthy control individuals, but using shipped samples, we observed that participants with type 1 diabetes had statistically significant phase shifts occurring in the time of peak occurrence of B cells (+4.8 h), CD4 and CD8 T cells (~ +5 h) and their naive and effector memory subsets (~ +3.3 to +4.5 h), and regulatory T cells (+4.1 h). An independent streptozotocin murine experiment confirmed the phase shifting of CD8 T cells and suggests that circadian dysrhythmia in type 1 diabetes might be an effect and not a cause of the disease. Conclusions/interpretation: Future efforts investigating this newly described aspect of type 1 diabetes in human participants are warranted. Peripheral immune populations should be measured near the same time of day in order to reduce circadian-related variation

    Costs of major depression covered / not covered in British Columbia, Canada

    No full text
    Abstract Background Major depressive disorder (MDD) is one of the world’s leading causes of disability. Our purpose was to characterize the total costs of MDD and evaluate the degree to which the British Columbia provincial health system meets its objective to protect people from the financial impact of illness. Methods We performed a population-based cohort study of adults newly diagnosed with MDD between 2015 and 2020 and followed their health system costs over two years. The expenditure proportion of MDD-related, patient paid costs relative to non-subsistence income was estimated, incidences of financial hardship were identified and the slope index of inequality (SII) between the highest and lowest income groups compared across regions. Results There were 250,855 individuals diagnosed with MDD in British Columbia over the observation period. Costs to the health system totalled >1.5 billion(2020CDN),averaging1.5 billion (2020 CDN), averaging 138/week for the first 12 weeks following a new diagnosis and 65/weektoweek52and65/week to week 52 and 55/week for weeks 53–104 unless MDD was refractory to treatment (125/weekbetweenweek12–52and125/week between week 12–52 and 101/week over weeks 53–104). The proportion of MDD-attributable costs not covered by the health system was 2-15x greater than costs covered by the health system, exceeding $700/week for patients with severe MDD or MDD that was refractory to treatment. Population members in lower-income groups and urban homeowners had disadvantages in the distribution of financial protection received by the health system (SII reached − 8.47 and 15.25, respectively); however, financial hardship and inequities were mitigated province-wide if MDD went into remission (SII − 0.07 to 0.6). Conclusions MDD-attributable costs to health systems and patients are highest in the first 12 weeks after a new diagnosis. During this time, lower income groups and homeowners in urban areas run the risk of financial hardship

    Peripheral immune circadian variation, synchronisation and possible dysrhythmia in established type 1 diabetes

    Get PDF
    AIMS/HYPOTHESIS: The circadian clock influences both diabetes and immunity. Our goal in this study was to characterise more thoroughly the circadian patterns of immune cell populations and cytokines that are particularly relevant to the immune pathology of type 1 diabetes and thus fill in a current gap in our understanding of this disease. METHODS: Ten individuals with established type 1 diabetes (mean disease duration 11 years, age 18–40 years, six female) participated in a circadian sampling protocol, each providing six blood samples over a 24 h period. RESULTS: Daily ranges of population frequencies were sometimes large and possibly clinically significant. Several immune populations, such as dendritic cells, CD4 and CD8 T cells and their effector memory subpopulations, CD4 regulatory T cells, B cells and cytokine IL-6, exhibited statistically significant circadian rhythmicity. In a comparison with historical healthy control individuals, but using shipped samples, we observed that participants with type 1 diabetes had statistically significant phase shifts occurring in the time of peak occurrence of B cells (+4.8 h), CD4 and CD8 T cells (~ +5 h) and their naive and effector memory subsets (~ +3.3 to +4.5 h), and regulatory T cells (+4.1 h). An independent streptozotocin murine experiment confirmed the phase shifting of CD8 T cells and suggests that circadian dysrhythmia in type 1 diabetes might be an effect and not a cause of the disease. CONCLUSIONS/INTERPRETATION: Future efforts investigating this newly described aspect of type 1 diabetes in human participants are warranted. Peripheral immune populations should be measured near the same time of day in order to reduce circadian-related variation. GRAPHICAL ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains peer-reviewed but unedited supplementary material available at 10.1007/s00125-021-05468-6
    corecore