30 research outputs found

    Long-timescale dynamics of the Drew-Dickerson dodecamer

    Get PDF
    We present a systematic study of the long-timescale dynamics of the Drew-Dickerson dodecamer (DDD: d(CGCGAATTGCGC)2) a prototypical B-DNA duplex. Using our newly parameterized PARMBSC1 force field, we describe the conformational landscape of DDD in a variety of ionic environments from minimal salt to 2 M Na(+)Cl(-) or K(+)Cl(-) The sensitivity of the simulations to the use of different solvent and ion models is analyzed in detail using multi-microsecond simulations. Finally, an extended (10 μs) simulation is used to characterize slow and infrequent conformational changes in DDD, leading to the identification of previously uncharacterized conformational states of this duplex which can explain biologically relevant conformational transitions. With a total of more than 43 μs of unrestrained molecular dynamics simulation, this study is the most extensive investigation of the dynamics of the most prototypical DNA duplex

    Mucopolysaccharidosis type II: European recommendations for the diagnosis and multidisciplinary management of a rare disease

    Get PDF
    Mucopolysaccharidosis type II (MPS II) is a rare, life-limiting, X-linked recessive disease characterised by deficiency of the lysosomal enzyme iduronate-2-sulfatase. Consequent accumulation of glycosaminoglycans leads to pathological changes in multiple body systems. Age at onset, signs and symptoms, and disease progression are heterogeneous, and patients may present with many different manifestations to a wide range of specialists. Expertise in diagnosing and managing MPS II varies widely between countries, and substantial delays between disease onset and diagnosis can occur. In recent years, disease-specific treatments such as enzyme replacement therapy and stem cell transplantation have helped to address the underlying enzyme deficiency in patients with MPS II. However, the multisystem nature of this disorder and the irreversibility of some manifestations mean that most patients require substantial medical support from many different specialists, even if they are receiving treatment. This article presents an overview of how to recognise, diagnose, and care for patients with MPS II. Particular focus is given to the multidisciplinary nature of patient management, which requires input from paediatricians, specialist nurses, otorhinolaryngologists, orthopaedic surgeons, ophthalmologists, cardiologists, pneumologists, anaesthesiologists, neurologists, physiotherapists, occupational therapists, speech therapists, psychologists, social workers, homecare companies and patient societies. Take-home message. Expertise in recognising and treating patients with MPS II varies widely between countries. This article presents pan-European recommendations for the diagnosis and management of this life-limiting disease

    Modulation of Pre-Capillary Arteriolar Pressure with Drag-Reducing Polymers: A Novel Method for Enhancing Microvascular Perfusion

    No full text
    OBJECTIVE: We have shown that drag reducing polymers (DRP) enhance capillary perfusion during severe coronary stenosis and increase RBC velocity in capillaries, through uncertain mechanisms. We hypothesize that DRP decreases pressure loss from the aorta to the arteriolar compartment. METHODS: Intravital microscopy of the rat cremaster muscle and measurement of pressure in arterioles (diameters 20–132 µm) was performed in 24 rats. DRP (polyethylene oxide, 1 ppm) was infused i.v. and measurements were made at baseline and 20 minutes after completion of DRP infusion. In a 10 rat subset, additional measurements were made 3 minutes after the start, and 1–5 and 10 minutes after completion of DRP. RESULTS: Twenty minutes after the completion of DRP mean arteriolar pressure was 22% higher than baseline (from 42±3 to 49±3 mmHg, p<0.005, n=24). DRP decreased the pressure loss from the aorta to the arterioles by 24% (from 35±6 to 27±5 mmHg, p=0.001, n=10). In addition, there was a strong trend towards an increase in pressure at 10 minutes after the completion of DRP (n=10). CONCLUSIONS: DRP diminishes pressure loss between the aorta and the arterioles. This results in a higher pre-capillary pressure and likely explains the observed DRP enhancement in capillary perfusion

    Validation of Ultrasound Super-Resolution Imaging of Vasa Vasorum in Rabbit Atherosclerotic Plaques

    No full text
    Acute coronary syndromes and strokes are mainly caused by atherosclerotic plaque (AP) rupture. Abnormal increase of vasa vasorum (VV) is reported as a key evidence of plaque progression and vulnerability. However, due to their tiny size, it is still challenging to noninvasively identify VV near the major vessels. Ultrasound super resolution (USR), a technique that provides high spatial resolution beyond the acoustic diffraction limit, demonstrated an adequate spatial resolution for VV detection in early studies. However, a thorough validation of this technology in the plaque model is particularly needed in order to continue further extended preclinical studies. In this letter, we present an experiment protocol that verifies the USR technology for VV identification with subsequent histology and ex vivo micro-computed tomography ( \mu CT). Deconvolution-based USR imaging was applied on two rabbits to identify the VV near the AP in the femoral artery. Histology and ex vivo \mu CT imaging were performed on excised femoral tissue to validate the USR technique both pathologically and morphologically. This established validation protocol could facilitate future extended preclinical studies toward the clinical translation of USR imaging for VV identification. © IEEE.1

    Ultrasound Targeted Microbubble Destruction-Mediated Delivery of a Transcription Factor Decoy Inhibits STAT3 Signaling and Tumor Growth.

    No full text
    Signal transducer and activator of transcription 3 (STAT3) is constitutively activated in many cancers where it acts to promote tumor progression. A STAT3-specific transcription factor decoy has been developed to suppress STAT3 downstream signaling, but a delivery strategy is needed to improve clinical translation. Ultrasound-targeted microbubble destruction (UTMD) has been shown to enhance image-guided local delivery of molecular therapeutics to a target site. The objective of this study was to deliver STAT3 decoy to squamous cell carcinoma (SCC) tumors using UTMD to disrupt STAT3 signaling and inhibit tumor growth. Studies performed demonstrated that UTMD treatment with STAT3 decoy-loaded microbubbles inhibited STAT3 signaling in SCC cells in vitro. Studies performed in vivo demonstrated that UTMD treatment with STAT3 decoy-loaded microbubbles induced significant tumor growth inhibition (31-51% reduced tumor volume vs. controls, p &lt; 0.05) in mice bearing SCC tumors. Furthermore, expression of STAT3 downstream target genes (Bcl-xL and cyclin D1) was significantly reduced (34-39%, p &lt; 0.05) in tumors receiving UTMD treatment with STAT3 decoy-loaded microbubbles compared to controls. In addition, the quantity of radiolabeled STAT3 decoy detected in tumors eight hours after treatment was significantly higher with UTMD treatment compared to controls (70-150%, p &lt; 0.05). This study demonstrates that UTMD can increase delivery of a transcription factor decoy to tumors in vivo and that the decoy can inhibit STAT3 signaling and tumor growth. These results suggest that UTMD treatment holds potential for clinical use to increase the concentration of a transcription factor signaling inhibitor in the tumor

    Ultrasound Targeted Microbubble Destruction-Mediated Delivery of a Transcription Factor Decoy Inhibits STAT3 Signaling and Tumor Growth

    No full text
    © 2015 Ivyspring International Publisher. Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited. Se
    corecore