19 research outputs found

    The influence of fencing on seedling establishment during reforestation of oak stands: a comparison of artificial and natural regeneration techniques including costs

    Get PDF
    In temperate Europe, oak-dominated forests are widespread, supporting high biodiversity and providing important ecosystem services. Insufficient natural regeneration has, however, been a concern for over a century. The objective of this study was to gain insights into differences in regeneration success using artificial and natural regeneration techniques for reforestation of oak (Quercus robur L.) stands. We monitored seedlings following planting, direct seeding and natural regeneration over five years in a randomized block experiment in southern Sweden with fenced and non-fenced plots. Fencing had a strong positive effect on height growth, especially for planted seedlings that were taller than the other seedlings and more frequently browsed in non-fenced plots. In contrast, there was little effect of fencing on survival, establishment rate and recruitment rate of seedlings. Due to aboveground damage on seedlings from voles, protection of acorns did not improve establishment rate following direct seeding. Under current circumstances at the site with a sparse shelterwood of old oaks, we conclude that natural regeneration was the most cost-efficient regeneration method. It resulted in the most seedlings at the lowest cost. However, regeneration success was heavily influenced by interference from herbaceous vegetation. With a small additional investment in vegetation control, the results might have been improved for planting and direct seeding

    Multiplexing of miniaturized planar antibody arrays for serum protein profiling - a biomarker discovery in SLE nephritis.

    No full text
    In the quest to decipher disease-associated biomarkers, miniaturized and multiplexed antibody arrays may play a central role in generating protein expression profiles, or protein maps, of crude serum samples. In this conceptual study, we explored a novel, 4-times larger pen design, enabling us to, in a unique manner, simultaneously print 48 different reagents (antibodies) as individual 78.5 ÎĽm(2) (10 ÎĽm in diameter) sized spots at a density of 38 000 spots cm(-2) using dip-pen nanolithography technology. The antibody array set-up was interfaced with a high-resolution fluorescent-based scanner for sensitive sensing. The performance and applicability of this novel 48-plex recombinant antibody array platform design was demonstrated in a first clinical application targeting SLE nephritis, a severe chronic autoimmune connective tissue disorder, as the model disease. To this end, crude, directly biotinylated serum samples were targeted. The results showed that the miniaturized and multiplexed array platform displayed adequate performance, and that SLE-associated serum biomarker panels reflecting the disease process could be deciphered, outlining the use of miniaturized antibody arrays for disease proteomics and biomarker discovery
    corecore