420 research outputs found

    Seasonal succession of free-living bacterial communities in coastal waters of the Western Antarctic Peninsula

    Get PDF
    © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 7 (2016): 1731, doi: 10.3389/fmicb.2016.01731.The marine ecosystem along the Western Antarctic Peninsula undergoes a dramatic seasonal transition every spring, from almost total darkness to almost continuous sunlight, resulting in a cascade of environmental changes, including phytoplankton blooms that support a highly productive food web. Despite having important implications for the movement of energy and materials through this ecosystem, little is known about how these changes impact bacterial succession in this region. Using 16S rRNA gene amplicon sequencing, we measured changes in free-living bacterial community composition and richness during a 9-month period that spanned winter to the end of summer. Chlorophyll a concentrations were relatively low until summer when a major phytoplankton bloom occurred, followed 3 weeks later by a high peak in bacterial production. Richness in bacterial communities varied between ~1,200 and 1,800 observed operational taxonomic units (OTUs) before the major phytoplankton bloom (out of ~43,000 sequences per sample). During peak bacterial production, OTU richness decreased to ~700 OTUs. The significant decrease in OTU richness only lasted a few weeks, after which time OTU richness increased again as bacterial production declined toward pre-bloom levels. OTU richness was negatively correlated with bacterial production and chlorophyll a concentrations. Unlike the temporal pattern in OTU richness, community composition changed from winter to spring, prior to onset of the summer phytoplankton bloom. Community composition continued to change during the phytoplankton bloom, with increased relative abundance of several taxa associated with phytoplankton blooms, particularly Polaribacter. Bacterial community composition began to revert toward pre-bloom conditions as bacterial production declined. Overall, our findings clearly demonstrate the temporal relationship between phytoplankton blooms and seasonal succession in bacterial growth and community composition. Our study highlights the importance of high-resolution time series sampling, especially during the relatively under-sampled Antarctic winter and spring, which enabled us to discover seasonal changes in bacterial community composition that preceded the summertime phytoplankton bloom.CL was partially funded by the Graduate School and the Department of Ecology and Evolutionary Biology at Brown University and the Brown University-Marine Biological Laboratory Joint Graduate Program. This material is based upon work supported by the National Science Foundation under Grant Nos. ANT-1142114 to LA-Z, OPP-0823101 and PLR-1440435 to HD, and ANT-1141993 to JR

    Comparative Molecular Microbial Ecology of the Spring Haptophyte Bloom in a Greenland Arctic Oligosaline Lake

    Get PDF
    The Arctic is highly sensitive to increasing global temperatures and is projected to experience dramatic ecological shifts in the next few decades. Oligosaline lakes are common in arctic regions where evaporation surpasses precipitation, however these extreme microbial communities are poorly characterized. Many oligosaline lakes, in contrast to freshwater ones, experience annual blooms of haptophyte algae that generate valuable alkenone biomarker records that can be used for paleoclimate reconstruction. These haptophyte algae are globally important, and globally distributed, aquatic phototrophs yet their presence in microbial molecular surveys is scarce. To target haptophytes in a molecular survey, we compared microbial community structure during two haptophyte bloom events in an arctic oligosaline lake, Lake BrayaSø in southwestern Greenland, using high-throughput pyrotag sequencing. Our comparison of two annual bloom events yielded surprisingly low taxon overlap, only 13% for bacterial and 26% for eukaryotic communities, which indicates significant annual variation in the underlying microbial populations. Both the bacterial and eukaryotic communities strongly resembled high-altitude and high latitude freshwater environments. In spite of high alkenone concentrations in the water column, and corresponding high haptophyte rRNA gene copy numbers, haptophyte pyrotag sequences were not the most abundant eukaryotic tag, suggesting that sequencing biases obscured relative abundance data. With over 170 haptophyte tag sequences, we observed only one haptophyte algal Operational Taxonomic Unit, a prerequisite for accurate paleoclimate reconstruction from the lake sediments. Our study is the first to examine microbial diversity in a Greenland lake using next generation sequencing and the first to target an extreme haptophyte bloom event. Our results provide a context for future explorations of aquatic ecology in the warming arctic

    A molecular approach to questions in the phylogeny of planktonic sarcodines

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Biology, 1996.Includes bibliographical references.by Linda Angela Amaral Zettler.Ph.D

    Distribution and seasonal variability in the benthic eukaryotic community of Río Tinto (SW, Spain), an acidic, high metal extreme environment

    Get PDF
    Author Posting. © The Author(s), 2007. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Systematic and Applied Microbiology 30 (2007): 531-546, doi:10.1016/j.syapm.2007.05.003.The eukaryotic community of Río Tinto (SW, Spain) was surveyed fall, winter, and spring through the combined use of traditional microscopy and molecular approaches including Denaturing Gradient Gel Electrophoresis (DGGE) and sequence analysis of 18S rRNA gene fragments. We compared eukaryotic assemblages of surface sediment biofilms collected in January, May and September 2002 from 13 sampling stations along the river. Physicochemical data revealed extremely acidic conditions (pH ranged from 0.9 to 2.5) with high concentrations of heavy metals including up to 20 g l-1 Fe, 317 mg l-1 Zn, 47 mg l-1 As, 42 mg l-1 Cd, and 4 mg l-1 Ni. In total, 20 taxa were identified, including members of the Bacillariophyta, Chlorophyta, and Euglenophyta phyla as well as ciliates, cercomonads, amoebae, stramenopiles, fungi, heliozoan and rotifers. In general, total cell abundances were highest in fall and spring decreasing drastically in winter and the sampling stations with the most extreme conditions showed the lowest number of cells as well as the lowest diversity. Species diversity does not vary much during the year. Only the filamentous algae showed a dramatic seasonal change almost disappearing in winter and reaching the highest biomass during the summer. PCA showed a high inverse correlation between pH and most of the heavy metals analyzed as well as Dunaliella sp., while Chlamydomonas sp. is directly related to pH during May and September. Three heavy metals (Zn, Cu and Ni) remained separate from the rest and showed an inverse correlation with most of the species analyzed except for Dunaliella sp.A.A was supported by the Spanish Ministry of Education and Science through the Ramón y Cajal program. This work has been supported by grant CGL2005-05470/BOS and grants to the Centro de Astrobiología at the Instituto National de Técnica Aeroespacial

    Comparative mitochondrial and chloroplast genomics of a genetically distinct form of Sargassum contributing to recent “Golden Tides” in the Western Atlantic

    Get PDF
    © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ecology and Evolution 7 (2017): 516–525, doi:10.1002/ece3.2630.Over the past 5 years, massive accumulations of holopelagic species of the brown macroalga Sargassum in coastal areas of the Caribbean have created “golden tides” that threaten local biodiversity and trigger economic losses associated with beach deterioration and impact on fisheries and tourism. In 2015, the first report identifying the cause of these extreme events implicated a rare form of the holopelagic species Sargassum natans (form VIII). However, since the first mention of S. natans VIII in the 1930s, based solely on morphological characters, no molecular data have confirmed this identification. We generated full-length mitogenomes and partial chloroplast genomes of all representative holopelagic Sargassum species, S. fluitans III and S. natans I alongside the putatively rare S. natans VIII, to demonstrate small but consistent differences between S. natans I and VIII (7 bp differences out of the 34,727). Our comparative analyses also revealed that both S. natans I and S. natans VIII share a very close phylogenetic relationship with S. fluitans III (94- and 96-bp differences of 34,727). We designed novel primers that amplified regions of the cox2 and cox3 marker genes with consistent polymorphic sites that enabled differentiation between the two S. natans forms (I and VIII) from each other and both from S. fluitans III in over 150 Sargassum samples including those from the 2014 golden tide event. Despite remarkable gene synteny and sequence conservation, the three Sargassum forms differ in morphology, ecology, and distribution patterns, warranting more extensive interrogation of holopelagic Sargassum genomes as a whole.This work was supported by a US National Science Foundation (NSF) collaborative grant to LAA-Z (OCE-1155571) and ERZ (OCE-1155379), and an NSF TUES grant (DUE-1043468) to LAA-Z and ER

    Microbial diversity and potential pathogens in onamental fish aquarium water

    Get PDF
    © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS ONE 7 (2012): e39971, doi:10.1371/journal.pone.0039971.Ornamental fishes are among the most popular and fastest growing categories of pets in the United States (U.S.). The global scope and scale of the ornamental fish trade and growing popularity of pet fish in the U.S. are strong indicators of the myriad economic and social benefits the pet industry provides. Relatively little is known about the microbial communities associated with these ornamental fishes or the aquarium water in which they are transported and housed. Using conventional molecular approaches and next generation high-throughput amplicon sequencing of 16S ribosomal RNA gene hypervariable regions, we characterized the bacterial community of aquarium water containing common goldfish (Carassius auratus) and Chinese algae eaters (Gyrinocheilus aymonieri) purchased from seven pet/aquarium shops in Rhode Island and identified the presence of potential pathogens. Our survey identified a total of 30 phyla, the most common being Proteobacteria (52%), Bacteroidetes (18%) and Planctomycetes (6%), with the top four phyla representing >80% of all sequences. Sequences from our water samples were most closely related to eleven bacterial species that have the potential to cause disease in fishes, humans and other species: Coxiella burnetii, Flavobacterium columnare, Legionella birminghamensis, L. pneumophila, Vibrio cholerae, V. mimicus. V. vulnificus, Aeromonas schubertii, A. veronii, A. hydrophila and Plesiomonas shigelloides. Our results, combined with evidence from the literature, suggest aquarium tank water harboring ornamental fish are an understudied source for novel microbial communities and pathogens that pose potential risks to the pet industry, fishes in trade, humans and other species

    Biodegradable plastics in Mediterranean coastal environments feature contrasting microbial succession

    Get PDF
    Plastic pollution of the ocean is a top environmental concern. Biodegradable plastics present a potential “solution” in combating the accumulation of plastic pollution, and their production is currently increasing. While these polymers will contribute to the future plastic marine debris budget, very little is known still about the behavior of biodegradable plastics in different natural environments. In this study, we molecularly profiled entire microbial communities on laboratory confirmed biodegradable polybutylene sebacate-co-terephthalate (PBSeT) and polyhydroxybutyrate (PHB) films, and non-biodegradable conventional low-density polyethylene (LDPE) films that were incubated in situ in three different coastal environments in the Mediterranean Sea. Samples from a pelagic, benthic, and eulittoral habitat were taken at five timepoints during an incubation period of 22 months. We assessed the presence of potential biodegrading bacterial and fungal taxa and contrasted them against previously published in situ disintegration data of these polymers. Scanning electron microscopy imaging complemented our molecular data. Putative plastic degraders occurred in all environments, but there was no obvious “core” of shared plastic-specific microbes. While communities varied between polymers, the habitat predominantly selected for the underlying communities. Observed disintegration patterns did not necessarily match community patterns of putative plastic degraders

    Ciliate diversity, community structure, and novel taxa in lakes of the McMurdo Dry Valleys, Antarctica

    Get PDF
    Author Posting. © Marine Biological Laboratory, 2014. This article is posted here by permission of Marine Biological Laboratory for personal use, not for redistribution. The definitive version was published in Biological Bulletin 227 (2014): 175-190.We report an in-depth survey of next-generation DNA sequencing of ciliate diversity and community structure in two permanently ice-covered McMurdo Dry Valley lakes during the austral summer and autumn (November 2007 and March 2008). We tested hypotheses on the relationship between species richness and environmental conditions including environmental extremes, nutrient status, and day length. On the basis of the unique environment that exists in these high-latitude lakes, we expected that novel taxa would be present. Alpha diversity analyses showed that extreme conditions—that is, high salinity, low oxygen, and extreme changes in day length—did not impact ciliate richness; however, ciliate richness was 30% higher in samples with higher dissolved organic matter. Beta diversity analyses revealed that ciliate communities clustered by dissolved oxygen, depth, and salinity, but not by season (i.e., day length). The permutational analysis of variance test indicated that depth, dissolved oxygen, and salinity had significant influences on the ciliate community for the abundance matrices of resampled data, while lake and season were not significant. This result suggests that the vertical trends in dissolved oxygen concentration and salinity may play a critical role in structuring ciliate communities. A PCR-based strategy capitalizing on divergent eukaryotic V9 hypervariable region ribosomal RNA gene targets unveiled two new genera in these lakes. A novel taxon belonging to an unknown class most closely related to Cryptocaryon irritans was also inferred from separate gene phylogenies.Funding was provided by NSF DEB-0717390 to Linda Amaral-Zettler (MIRADA-LTERS); OPP-1115245, OPP-0838933, OPP-1027284, and OPP-0839075 to John C. Priscu; and OPP-0631659 and OPP-1056396 to Rachael Morgan-Kiss. We would also like to acknowledge the China Scholarship Council (No. [2012] 3013) for fellowship support to Yuan Xu enabling her to study at the Marine Biological Laboratory. The Montana Space Grant Consortium provided additional funding for Trista Vick-Majors

    Comparison of bacterial communities in sands and water at beaches with bacterial water quality violations

    Get PDF
    © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 9 (2014): e90815, doi:10.1371/journal.pone.0090815.Recreational water quality, as measured by culturable fecal indicator bacteria (FIB), may be influenced by persistent populations of these bacteria in local sands or wrack, in addition to varied fecal inputs from human and/or animal sources. In this study, pyrosequencing was used to generate short sequence tags of the 16S hypervariable region ribosomal DNA from shallow water samples and from sand samples collected at the high tide line and at the intertidal water line at sites with and without FIB exceedance events. These data were used to examine the sand and water bacterial communities to assess the similarity between samples, and to determine the impact of water quality exceedance events on the community composition. Sequences belonging to a group of bacteria previously identified as alternative fecal indicators were also analyzed in relationship to water quality violation events. We found that sand and water samples hosted distinctly different overall bacterial communities, and there was greater similarity in the community composition between coastal water samples from two distant sites. The dissimilarity between high tide and intertidal sand bacterial communities, although more similar to each other than to water, corresponded to greater tidal range between the samples. Within the group of alternative fecal indicators greater similarity was observed within sand and water from the same site, likely reflecting the anthropogenic contribution at each beach. This study supports the growing evidence that community-based molecular tools can be leveraged to identify the sources and potential impact of fecal pollution in the environment, and furthermore suggests that a more diverse bacterial community in beach sand and water may reflect a less contaminated site and better water quality.This work was supported by the National Science Foundation grant OCE-0430724, and the National Institute of Environmental Health Sciences grant P0ES012742 to the Woods Hole Center for Ocean and Human Health. E. Halliday was partially supported by WHOI Academic Programs and grants from the WHOI Ocean Ventures Fund and the WHOI Coastal Ocean Institute

    The biogeography of the Plastisphere : implications for policy

    Get PDF
    Author Posting. © Ecological Society of America, 2015. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Frontiers in Ecology and the Environment 13 (2015): 541–546, doi:10.1890/150017.Microplastics (particles less than 5 mm) numerically dominate marine debris and occur from coastal waters to mid-ocean gyres, where surface circulation concentrates them. Given the prevalence of plastic marine debris (PMD) and the rise in plastic production, the impacts of plastic on marine ecosystems will likely increase. Microscopic life (the “Plastisphere”) thrives on these tiny floating “islands” of debris and can be transported long distances. Using next-generation DNA sequencing, we characterized bacterial communities from water and plastic samples from the North Pacific and North Atlantic subtropical gyres to determine whether the composition of different Plastisphere communities reflects their biogeographic origins. We found that these communities differed between ocean basins – and to a lesser extent between polymer types – and displayed latitudinal gradients in species richness. Our research reveals some of the impacts of microplastics on marine biodiversity, demonstrates that the effects and fate of PMD may vary considerably in different parts of the global ocean, and suggests that PMD mitigation will require regional management efforts.This work was supported by a US National Science Foundation (NSF) collaborative grant to LAA-Z (OCE-1155571), ERZ (OCE-1155379), and TJM (OCE-1155671), and was partially funded by an NSF TUES grant (DUE-1043468) to LAA-Z and ERZ, and by the Richard Saltonstall Charitable Foundation to TJM. GP was funded through the OCE-1155379 grant and assisted with identification of plastic resins via ATR-FTIR
    corecore