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Abstract

Ornamental fishes are among the most popular and fastest growing categories of pets in the United States (U.S.). The global
scope and scale of the ornamental fish trade and growing popularity of pet fish in the U.S. are strong indicators of the
myriad economic and social benefits the pet industry provides. Relatively little is known about the microbial communities
associated with these ornamental fishes or the aquarium water in which they are transported and housed. Using
conventional molecular approaches and next generation high-throughput amplicon sequencing of 16S ribosomal RNA gene
hypervariable regions, we characterized the bacterial community of aquarium water containing common goldfish (Carassius
auratus) and Chinese algae eaters (Gyrinocheilus aymonieri) purchased from seven pet/aquarium shops in Rhode Island and
identified the presence of potential pathogens. Our survey identified a total of 30 phyla, the most common being
Proteobacteria (52%), Bacteroidetes (18%) and Planctomycetes (6%), with the top four phyla representing .80% of all
sequences. Sequences from our water samples were most closely related to eleven bacterial species that have the potential
to cause disease in fishes, humans and other species: Coxiella burnetii, Flavobacterium columnare, Legionella
birminghamensis, L. pneumophila, Vibrio cholerae, V. mimicus. V. vulnificus, Aeromonas schubertii, A. veronii, A. hydrophila
and Plesiomonas shigelloides. Our results, combined with evidence from the literature, suggest aquarium tank water
harboring ornamental fish are an understudied source for novel microbial communities and pathogens that pose potential
risks to the pet industry, fishes in trade, humans and other species.
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Introduction

Ornamental fishes are the third most common group of pets in

United States (U.S.) homes today. The 2011–2012 survey of the

American Pet Products Manufacturers Association reported that

62% of U.S. households (73 million homes) own a pet. Of these,

17% own ornamental aquarium fishes, totaling 73 million homes

with more than 151.1 million freshwater and 8.61 million

saltwater fishes. During the past decade, fishes were one of the

fastest growing categories of pets in the U.S., increasing in

ownership by more than 20% over the previous decade [1].

Ornamental fishes sold in the country are both bred domestically

and imported from abroad [2,3]. More than 90% of live non-

domesticated wildlife imported to the U.S. during the period

2000–2006 was freshwater and marine ornamental fishes,

originating largely from Southeast Asia, and totaling ,1.1 billion

individuals. On average, ,18 thousand shipments and ,187

million live aquarium fishes were imported annually, 99% of

which were intended for commercial sale in the pet industry.

The pet industry provides many economic and social benefits

and the global scope, scale and growing popularity of the

ornamental fish trade are a testament to this. Unintended

outcomes can occur, however, including the spread of potential

pathogens that may cause disease in trade animals themselves or to

other susceptible hosts encountered in supply chains, at pet shops,

or end destination aquaria. In particular, carriage and aquarium

tank water associated with ornamental fishes provide prime

conditions for bacterial growth; most fishes in trade are tropical

in origin [2] and require the same warm, nutrient-rich, and

aerated environments that favor bacterial growth. To date, very

few studies have characterized the overall microbial communities

or potential pathogens associated with ornamental fishes or their

water [4–6]. This was the primary goal of our study.

New molecular strategies introduced by an international effort

to census marine life [7–10] have enabled rapid and cost effective

means of characterizing microbial communities in a range of

habitats beyond the marine environment, including human

microbiomes [11–13], those of other animals [14,15], and high

human impact environments such as waste water and urban air

[16,17]. Like humans, ornamental fishes should possess an order of

magnitude more microbial cells than fish cells in their bodies [18].

Characterizing the microbial communities and pathogenic taxa

associated with the ornamental fish trade would broadly benefit

the aquarium industry, aquaculture, and public health officials
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concerned with opportunistic bacterial infections in compromised

populations. Using a combination of traditional molecular

approaches and next generation high-throughput amplicon

sequencing of 16S ribosomal RNA gene hypervariable regions,

we report results from a survey of the bacterial community

composition, a more targeted survey of Vibrio and gamma-

proteobacterial species composition, and specific potential path-

ogens found in ornamental fish aquarium tank water at seven pet/

aquarium shops in Rhode Island. To our knowledge this is the first

study to use high-throughput sequencing methods to characterize

the microbial community associated with ornamental fish aquar-

ium water in the pet industry.

Results

Microbial Diversity
Our sequencing of bacterial V3–V5 hypervariable regions of the

16S rRNA gene from two aquaria samples, each across three pet/

aquarium stores, generated a total of 64,757 reads (mean 10,792

per sample, range 6,934–14,295). We sequenced the same six

samples, plus one additional sample from a 4th store, using primers

targeting Vibrio species spanning the V4 hypervariable region that

generated an additional 44,713 16S rRNA gene amplicon reads

(mean 7,452 per sample) (Table 1). The latter primers combined a

forward general primer (518F) with a Vibrio-specific reverse primer

and had the advantage of recovering both Vibrio species, as well as

other members of the Gammaproteobacteria known to harbor

potentially pathogenic species.

Taxonomic analysis of the V3–V5 16S rRNA gene amplicon

reads yielded a total of 30 phyla across all samples with the two

most abundant, Proteobacteria (mean 51.8%) and Bacteriodetes

(mean 17.6%), accounting for nearly 70% of all reads. Several

phyla were extremely rare. Elusimicrobia, Deferribacteres and

Tenericutes contained only a single read (,0.01%), and WS3,

SR1 and TAO6 contained fewer than 10 reads each (,0.03%),

despite being present in multiple samples (Figure 1).

Alpha diversity (within sample diversity) based on species

richness estimation from our V3–V5 rRNA gene amplicon

sequencing differed significantly and was higher between store A

and both stores D and E, but not between stores D and E.

Analyses using both phylogeny-based metrics (Phylogenetic

Diversity (PD) Whole Tree) as implemented in Qiime v1.4.0

[19] and model-based parametric richness estimated using the

CatchAll program [20] showed similar trends in comparative

richness between stores (Figure 2). CatchAll estimates from store A

were highest with 9,130 estimated species, followed by store E with

5,308 and store D with 1,414 estimated species (Figure 2). Even

using the lowest confidence bound for store A (LB = 6,494) and the

upper bound for Store D (UB 1,650) this represented a near four-

fold difference in bacterial diversity between stores. We found no

significant differences in alpha diversity when samples were

grouped by the dominant fish species occupying tanks from which

samples were collected (data not shown), suggesting inter-store

variation had a stronger effect on bacterial diversity than fish

species.

Beta diversity metrics also showed strong groupings of samples

taken from the same store but were not statistically significant

(ANOSIM, p = 0.067). UNIFRAC distances [21] (a phylogenic-

based, taxonomy-independent metric) between samples within a

store were always smaller than any between-store comparisons,

and PCA analysis of these distances showed that samples from

each store clustered together (Figure 3). This pattern was also

evident using OTU abundance-based distance methods, and some

degree of clustering was evident with the Bray-Curtis (data not

shown) and Morisita-Horn (Figure 3) metrics, although groupings

between stores A and D fell apart using Morisita-Horn (Figure 3).

These differences are potentially due to heterogeneity in sequence

depth between samples (Store A: 20,295, Store D: 16,903, Store E:

27,016).

PCR Screening and Cloning of Potential Pathogens
We tested for the direct presence of 12 known bacterial or

eukaryotic potential pathogens in samples from all seven stores

using specific primer sets. Five of the twelve genera (,42%) were

not detected in any of our samples: Salmonella, Giardia, Naegleria,

Francisella, and Campylobacter. Acanthamoeba, a free-living opportu-

Table 1. Samples collected from bag water harboring Carassius auratus (Common Goldfish) or Gyrinocheilus aymonieri (Chinese
Algae Eater), purchased from four Rhode Island pet stores, and associated run results.

Sample Collection Information
341F-926R (V3–V5)
Amplicon Run*

518F-680R (V4) Amplicon
Run*

Sample name** Target species Other species within tank No. target/No. other No. reads Obs. OTUs No. reads Obs. OTUs

A1 C. auratus Siluriformes sp. 19/3 9232 1312 6938 26

A2 G. aymonieri Macropodus opercularis 14/42 11221 1664 7096 14

Danio rerio

Ancistrus sp.

D1 C. auratus None 10/0 10268 580 7565 33

D2 G. aymonieri Paracheirodon innesi 10/20 6934 380 7599 29

E1 C. auratus Hemigrammus ocellifer 10/1 12807 917 7051 30

E2 G. aymonieri Poecilia reticulata 2/14 14295 1242 8464 61

Corydoras sp.

Misgurnus anguillicaudatus

B2 G. aymonieri None 10/0 N/A N/A 8202 44

*The 341F-926R primers were designed to capture overall bacterial diversity, whereas the 518F-680R primers were designed specifically to capture Vibrio diversity.
**Sample names consist of a store ID letter, followed by sample number taken at that store. Only a single sample exists from store B which was included only on the
518F-680R Vibrio-targeted amplicon run.
doi:10.1371/journal.pone.0039971.t001
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Figure 1. Phylum-level Bacterial Diversity. Phylum-level bacterial diversity as revealed by pyrotag sequencing of the hypervariable V3–V5 region of
16S rRNA genes in our study samples (Table 1). Thirty phyla were detected. A) Relative frequency of phyla as a proportion of total tags. Interstore variance in
relative frequency is depicted by color for the two most abundant phyla, Proteobacteria and Bacteroidetes, representing ,70% of all sequences. B) Interstore
variance in relative frequency for the remaining phyla (,30% of total reads) normalized to 100% after subtracting the Proteobacteria and Bacteriodetes.
doi:10.1371/journal.pone.0039971.g001

Figure 2. Alpha Diversity in Pet Shops. Alpha diversity within retail stores based on A) CatchAll’s Best Model analysis with non-rarified data
shown with 95% Bonferroni-corrected upper and lower confidence bounds for each estimate. B) Phylogenetic Diversity (PD) - Whole Tree analysis
calculated after rarifying samples to equal sequencing depth in QIIME. Both metrics were applied to calculate inter-store alpha diversity by grouping
2 samples from each store for a single analysis.
doi:10.1371/journal.pone.0039971.g002
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nistic pathogenic amoeba often harboring potentially pathogenic

symbiotic bacteria, was ubiquitous across all samples tested

(N = 10). The genera Vibrio, Legionella and Mycobacterium were all

found in a minimum of 10 of the 14 tanks from which we sampled,

while Cryptosporidium, Corynebacterineae and Aeromonas were less

frequently detected (in 3, 7 and 7 tanks respectively).

It is important to note that a negative PCR result, even after

multiple attempts, does not prove the absence of a given species.

Despite the use of positive controls in PCR reactions, reasons for

false negatives are numerous, including low target abundances,

lack of optimized PCR reaction conditions for particular genomic

DNA extractions, poor genomic DNA quality, or other method-

ological factors that may have prevented successful amplification

of a given sample. Therefore we did not perform statistical

analyses on inter-store differences.

We cloned and sequenced positive PCR amplicons from

Legionella, Vibrio, and Aeromonas genus-specific reactions to obtain

more refined taxonomic assignments of potential pathogens.

Double stranded sequencing of cloned products confirmed the

presence of the potential human pathogens Vibrio vulnificus, V.

cholerae, Legionella pneumophila and Aeromonas hydrophila in tank E1.

From the same freshwater aquaria we also sequenced 93 PCR

products targeting the near full-length 16S rRNA gene (E. coli

positions 27 to 1492), to compare these relative abundances with

those based on 454 sequencing. In this analysis, only 5 phyla were

uncovered, with the most abundant being Proteobacteria (60%),

followed by Fusobacteria (27%), Bacteroidetes (12%), Spirochaetes

(1%) and Nitrospirae (1%). Surprisingly, 4 potential human or fish

pathogen genera were also detected, including Aeromonas, Flavo-

bacterium, Plesiomonas, and Vibrio.

Vibrio Diversity
Our targeted Vibrio amplicon experiment yielded 27 different

Vibrio OTUs overall with both samples from store A having only

one OTU each, and with the highest number of OTUs coming

from Store E and represented by 11 different Vibrio OTU types.

The phylogenetic placement of these OTUs in a pruned version of

the SILVA ARB 5.1 tree is shown in Figure 4. Of all the GAST

associated taxonomic assignments, nearly half were assigned to V.

cholerae, and the remainder were either assigned to Vibrio sp. or V.

vulnificus. However, because GAST takes a very conservative

approach to assigning taxonomy it is helpful to examine the

relationship between known strains or species of Vibrio in the ARB

reference tree.

A Vibrio cholerae OTU (minimum GAST distance = 0, maximum

GAST distance = 1.3%) identified in ARB as strain PIM9

(GenBank #: GQ359963) was dominant in all stores. This

OTU ranged from being the only Vibrio present (100% of the Vibrio

community) to 13% of the community. The second most common

Vibrio OTU was very closely related to a Vibrio sp. cultured from a

biofilm at a fish farm [22]. In one of our samples this OTU was

dominant, constituting 87% of the Vibrio community. The

remaining Vibrio OTUs were very rare – constituting less than

1% of the community membership.

Discussion

Microbial Diversity
To the best of our knowledge this is the first survey to

characterize the microbiome of water associated with freshwater

ornamental aquarium fishes in the pet industry using high-

throughput methods. Two earlier studies by Raja et al. [5] and

Sugita et al. [6] focused on freshwater filter systems and marine

aquaria water respectively, but employed more classical microbi-

ological approaches including Sanger sequencing, bacterial counts

and culturing. In these studies the authors recovered only three

phyla from marine tanks (Proteobacteria, Bacteroidetes and

Firmicutes) and five phyla from freshwater tanks (Proteobacteria,

Bacteroidetes, Firmicutes, Nitrospira and Actinobacteria). These

results are similar to our freshwater aquaria clone library that

Figure 3. Beta Diversity Between Samples. Beta diversity between samples based on A) Morisita-Horn similarity metrics of non-rarified data
visualized using Non-Metric Multidimensional Scaling (NMDS). B) Unwieghted UNIFRAC distance calculated after rarifying samples to equal sequence
depth in QIIME, visualized using Principal Component Analysis.
doi:10.1371/journal.pone.0039971.g003
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Figure 4. Vibrio Reference Tree. Vibrio reference tree created using sequences of isolates from the SILVA-ARB 16S rRNA gene database. Shown in
red are Vibrio OTUs from our FLX run whose GAST taxonomy fell within the Vibrio genus. Red OTUs are labeled with species designations, tag count
and the number of samples that contained that OTU.
doi:10.1371/journal.pone.0039971.g004
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recovered 5 phyla (Proteobacteria, Fusobacteria, Bacteroidetes,

Spirochaetes and Nitrospirae). In contrast, our high-throughput

methods yielded 30 bacterial phyla. This striking contrast

illustrates the utility of high-throughput technology to characterize

extremely rare but important members of bacterial assemblages;

the potential pathogens uncovered in this study are a good

example (Table 2).

It is difficult to make direct comparisons of our high-throughput

results, but in typical freshwater environments (e.g. lakes, streams

etc.) Actinobacteria dominate [23] versus the Proteobacteria that

dominated our samples (All: 52%, Aquicella sp.: 3.8%, Polynucleo-

bacter cosmopolitanus: 3%, Novosphingobium sp.: 2.6%, Naxibacter sp.:

2.5%, Aeromonas sp.: 2%). A closer comparative environment for

our purposes may be tap water, since freshwater fish tanks in pet/

aquarium shops are generally filled using treated tap water.

Although no published tap water studies are currently available,

the VAMPS (http://vamps.mbl.edu) website has a collection of 25

tap water samples from Falmouth, MA. In comparison to these

data (mean relative abundance of tap water), our aquarium water

samples had smaller populations of Verrucomicrobia and

Cyanobacteria and larger populations of Bacteroidetes, OD1,

Fusobacteria and Spirochaetes. Proteobacteria was by far the most

abundant phylum in both tap water (64%) and aquarium water

(52%). We refrain from making direct comparisons or stating

statistically significant differences given that these datasets were

collected for different projects and used a different region of the

16S rRNA gene to assign taxonomy to each read, although both

did use the GAST taxonomic identification pipeline.

Table 2. Bacterial species identified in this study that have been reported elsewhere as pathogenic in various hosts.

GAST Identified OTU
Taxonomy

Number of
Positive
Samples

Primary Carrier Hosts &
Environments*

Hosts that Acquire the
Disease Disease Manifestation

Primary Transmission
Route

Sequences matching pathogenic species found with 454 sequenced 341F-926R universal bacterial V3V5 amplicons

Coxiella burnetii (1 OTU) 2 Isolated from aquatic
environments, Domestic
mammals, Birds [53]

Humans, Livestock,
Other domestic
mammals [53–54]

Q Fever (Humans),
Respiratory disease and
Abortion (Livestock)

Spore inhalation
[53–54]

Flavobacterium columnare
(2 OTUs)**

4 Isolated from aquatic
environments [55–56]
Freshwater fish [55],
Saprophyte [56]

Freshwater fish [55] Columnaris Contaminated water
[56]

Legionella pneumophila
(2 OTUs)

1 Freshwater amoebae
[57], Soils [58]

Humans [59],
Protozoa [57]

Legionaire’s disease,
Pontiac fever (Humans)

Spore inhalation
[59]

Legionella birminghamensis
(2 OTUs)

1 Unknown (presumed
freshwater amoebae,
soil) [60]

Rare in humans [61] Pneumonia Spore inhalation
[61]

Vibrio cholerae (4 OTUs)** 4 Isolated from aquatic
environments, Zooplankton
[62], Insects [63], Marine fish,
Shellfish [64]

Humans [62],
Marine fish [35]

Cholera (Humans),
Septicaemia (Fish)

Contaminated water
and food [62,65]

Vibrio mimicus (1 OTU) 1 Isolated from aquatic
environments [66],
Zooplankton, Crustaceans,
Reptile eggs [67]

Rare in humans [67] Diarrhea Contaminated water
and food [62,65]

Sequences matching pathogenic species found using 454 sequenced 518F-680R Vibrio specific V4 primers amplicons

Vibrio cholerae (12 OTUs) 7 See above

Vibrio vulnificus (3 OTUs) 1 Isolated from aquatic
environments,
Shellfish [68]

Humans [69], Fish,
Eels [70]

Wound infections
(Humans), Septicemia
(Fish)

Contaminated water
and food [62,65]

Aeromonas schubertii
(3 OTUs)

2 Unknown Human [21] Intestinal infection
(Humans)

Contaminated water
and food [62,65]

Sequences matching pathogenic species found using full length Sanger sequenced 8F-1492R amplicons

Aeromonas veronii++ N/A Isolated from aquatic
environments, Medical
Leech symbiont [71]

Human [71,26],
Fish [35]

Diarrhea (Humans),
Epizootic ulcerative
syndrome (Fish)

Contaminated water
and food [71,72]

Aeromonas hydrophila++ N/A Isolated from aquatic
environments [71]

Human [37,73],
Freshwater fish [35],
Nematode [71]

Diarrhea (Human),
Haemorrhagic
septicaemia, Fin rot (Fish)

Contaminated water
and food [71,72]

Plesiomonas shigelloides N/A Isolated from terrestiral and
aquatic environments, Fish,
Reptiles, Birds, Mammals
[73–75]

Humans [69,73],
Freshwater fish [35]

Intestinal infection,
diarrhea (Humans),
Isolated from morbid
individuals (Fish)

Contaminated water
and food [72]

*Many of these species have been isolated from environmental samples (eg. aquatic or terrestrial), this does not however imply that they are actively dividing outside of
a host.
**These species were also found using full-length 16S rRNA gene Sanger sequencing (see methods).
++Although these species were not found in either pyrosequencing run, the Aeromonas genus was found at high levels. The greater resolution of the longer Sanger
reads likely allowed for species level classification with Sanger reads, but not pyrotag reads.
doi:10.1371/journal.pone.0039971.t002
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Alpha diversity estimates were similar to those reported in the

literature but these vary greatly depending on the freshwater

environment, level of impact on the environment, and the

contribution of landscape transfers such as soil to the overall

community structure [24]. No landscape transfer into or out of our

sample tanks was occurring, and their bacterial community

structure should have only been a product of the water used to

fill the tanks, food additions, and any material arriving in shipment

containers. The large variation in both alpha and beta diversity

between stores was therefore surprising. Samples collected from

the same store generally clustered tightly together in PCA analyses

(Figure 3), despite the fact that we collected samples from different

tanks with highly variable species composition (Table 2). Further-

more, inter-store differences were always large, despite a shared

water source for the Providence area. This strongly suggests that

characteristics of the stores themselves – including cleaning

regimes, fish supplier, filtration type or handling procedures

influence the diversity and community structure of bacteria within

their tanks. Unfortunately, these kinds of contextual environmen-

tal data are lacking, and therefore it is difficult for us to draw

conclusions about the underlying water quality differences

between our stores that may be reflective of differences in

community composition. Further research including this type of

metadata could shed light on which husbandry techniques pet

stores use, or distributors fish are purchased from, facilitate healthy

fishes and aquarium environments, and which do not.

Potential Pathogens
Our survey identified 53 genera that contain potentially

pathogenic species (Table S3) and eleven species known to cause

disease in fishes, humans and other species (Table 2). However,

16S rRNA -based taxonomy does not provide the resolution

necessary to distinguish between innocuous and virulent organ-

isms, which can often have identical primary structure along much

of the molecule. We can therefore only comment on the potential

presence of a virulent strain within our samples, based on the

presence of its higher taxonomy. This is why we refer to them as

potential pathogens. It is important to note that the role mobile

genetic elements play in the ecology of virulence is still poorly

understood [25], but evidence exists that single-step transfers of

large DNA fragments can happen rapidly within a species [26],

potentially establishing virulence in a formally innocuous strain. It

is therefore reasonable to assume that the detection of a

pathogenic species, even if not resolved to the strain level,

represents a potential disease risk.

It is beyond the scope of this paper to discuss each of these

potential pathogens in depth though some context is warranted.

Many of the species in Table 2 are generally considered to infect

fishes or other animals opportunistically, and subsequent diseases

typically develop in ornamental and aquaculture fishes when

animals are stressed. Though rare, primary disease threats to

humans from ornamental fishes often result from accidental

ingestion of contaminated tank water or introduction of patho-

genic bacteria through open wounds [27–29]. Common bacterial

threats identified in the literature appear to be Mycobacterium,

Salmonella, Aeromonas and Legionella infections in children, pregnant

women and other immune compromised populations [29–32].

Among the potential fish pathogens identified in this survey,

Aeromonas and Vibrio species pose the most significant threats to

ornamental fishes. These bacteria are all common inhabitants of

healthy fishes and aquatic systems that can become pathogenic

and cause substantial mortality when conditions are stressful [33–

35]. The release of pathogenic bacteria from stressed, morbid and

dead fishes into carriage (during shipping) and aquarium water

shared by other animals exacerbates the risk of disease in

ornamental fish trade and is of specific concern to industry.

Diseases these species cause may occur under normal tank

conditions, however outbreaks are more common when fishes

are stressed by low oxygen, high ammonia, high nitrate, high

water temperature, rough handling, mechanical injury and

generally over-crowding [33–34]. The genus Aeromonas includes

several species that cause some of the most common bacterial

infections in freshwater fishes that frequently induce external

hemorrhages, distended abdomens and protruding eyes, and

though mortality rates are typical low (,10%) many strains are

resistant to commonly used antibiotics, making control for industry

difficult [36]. Aeromonas outbreaks in ornamental fishes can almost

always be tied back to poor water quality and rough handling. A.

shubertii, A. veroni and A. hydrophila can cause wound infections in

humans, gastroenteritis in healthy individuals, and opportunistic

systemic disease in immune compromised individuals [36].

Vibrios are typically associated with marine and brackish

environments but are occasionally detected in freshwater fishes

and environments, as they were in this study. Vibrio infections can

spread rapidly when fishes are confined in heavily stocked,

commercial systems where morbidity may reach 100% in affected

facilities [35,37]. V. vulnificus is the most common fish-derived

Vibrio infection in humans, with exposure resulting largely from

puncture wounds and ingestion, and clinical signs manifesting as

necrotizing fasciitis, edema, and swelling at the site of puncture

[37]. V. cholerae is perhaps the most widely recognized of the Vibrio

species, annually afflicting millions of people worldwide, primarily

in tropical developing nations. V. cholerae infections result from

ingestion of contaminated water or via infected shellfish and .100

million bacteria are required to cause disease in a healthy

individual though this is far less in immune compromised

populations and children. Vibrios have previously been identified

in aquaria though no causes resulting in human disease have been

reported [38–40]. In our study, the prevalence of V. cholerae among

our detected Vibrio OTUs is noteworthy. V. cholerae (non-O1) has

been detected in diseased goldfish [41], the common carp, cichlid,

Tilapia and mullet [42]. While there are reports of vibrios causing

disease in fishes, some reports suggest they may aid in fish

digestion and are beneficial to the fish intestine [42].

Future Directions
Our results, combined with evidence from the literature, suggest

that ornamental fishes and aquarium tank water are an

understudied system with highly diverse microbial communities

and sources of potential pathogens of interest to the pet industry

and public health. Many of the potentially pathogenic bacteria

discovered in our survey cannot be eradicated as they are part of

the normal microbial flora of myriad hosts and aquatic environ-

ments. And, as described above, they are not always harmful.

Nevertheless, risks exist and so we encourage owners of

ornamental fishes and the pet industry to take responsibility for

the health of the animals in their care and the people caring for

them. Risk reduction can benefit from additional science aimed at

providing a deeper understanding of the microbial ecology of

aquarium systems and especially the industry/consumer practices

that influence microbial community diversity and facilitate

opportunistic infections. Such knowledge can be distilled into

specific consumer and industry outreach initiatives. Guidelines

have been established to help prevent salmonellosis in reptile

owners (see those from the Association of Reptilian and

Amphibian Veterinarians and the Centers for Disease Control)

and help industry eliminate pathogen-carrying ticks on reptiles

imported to the U.S. for sale in the pet trade (PIJAC’s National

Aquarium Water Microbial Diversity and Pathogens
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Reptile Improvement Plan). Similar agendas may be created for

ornamental fishes, perhaps in line with the Marine Aquarium

Council’s certification program. Consumer education initiatives on

the topic of healthy pets are already reaching more groups (i.e.

PetWatch and CDC’s Healthy Pets Healthy People), some of

which include information on ornamental fishes. After a series of

failed policy attempts to address disease in wildlife trade [3], a

multi-pronged approach that unites consumers, industry and

scientists to reduce potential pathogens and disease in the nation’s

pet population, ornamental fishes included, seems to be the most

realistic way forward.

Methods

Sites, Species and Sample Collection
Over a two-day period in November 2009, we purchased

freshwater common goldfish (Carassius auratus) and Chinese algae

eaters (Gyrinocheilus aymonieri) from seven pet stores in the

Providence area of Rhode Island. Two stores represented national

chains and five were locally-owned small businesses. We

purchased two individuals of each species at six stores and an

additional two Chinese algae eaters at one store. Each individual

was associated with a single tank (resulting in 14 tanks sampled).

Store employees collected fishes and water and bagged individuals

of a single species together (two individuals per bag) with ,300–

500 mL of tank water. We immediately transported bags to Brown

University in Providence, RI for processing.

We manually filtered water samples to concentrate microbial

biomass immediately upon arrival at the lab. Sterile 60 mL

syringes were used to transfer water directly from the plastic bags

onto 0.2-mm Sterivex filter units (Millipore, Billerica, MA). We

filtered a total of 600 mL of water per bag such that each filter

corresponded to a single tank in a single store, yielding 14 filtered

samples. Air pushed through each filter three times served to

remove any residual water. After filtration was complete, we

placed filter cartridges immediately on dry ice and stored them

frozen at 280uC until transport on dry ice to the MBL at Woods

Hole for further processing. Following sampling, one of the

authors kept the fishes as personal pets.

DNA Extraction
DNA extraction followed Puregene (Qiagen, Valencia, CA) kit

instructions with the following modifications. We removed the

filter inside of the sterivex using a sterilized pvc pipe cutter. We

then used a sterile razor blade to cut the filter into two halves and

placed each half into a screw-cap tube containing Puregene lysis

buffer. Cell lysis was accomplished via the addition of lytic enzyme

and proteinase K incubation followed by bead beating with

0.1 mm zirconium beads (Biospec products #11079101z). We

bead-beated the cells at 5000 rpm for 60 seconds using a

Beatbeater 8 (Biospec Products, Bartlesville, OK). The remainder

of the protocol followed the manufacturer’s instructions. Water

filtration and DNA extraction protocols are available for download

at http://amarallab.mbl.edu.

PCR-screening and Cloning of Potential Pathogens
We used diagnostic PCR primers to determine the presence or

absence of 9 bacterial and 4 eukaryotic genera that contain

common human pathogens across our 14 freshwater aquarium

tank samples from the 7 surveyed pet stores. We based our primer

selection on previously published reports or personal communi-

cation and targeted bacterial 16S rRNA gene, eukaryotic 18S

rRNA gene, or protein-coding genes involved in pathogenicity (see

Table S2 for details of primers and citations). We confirmed the

quality of the template DNA for PCR by performing bacterial 16S

rRNA gene using general primers 27F and 1492R and eukaryotic

18S rRNA gene amplifications using universal EukA and EukB

primers targeting the 59 and 3 ends of the 18S rRNA gene

respectively [43].

Amplifications employed the Phusion High-Fidelity PCR kit

(Finnzymes, Espoo, Finland) at 98uC denaturation for 1 minute

followed by 25 cycles at 98uC for 5 seconds, primer annealing

temperature for 15 seconds, and 72uC for 30 seconds, followed by

a final 5 minutes at 72uC. Annealing temperature varied

depending on the melting temperature (Tm) of each primer set,

but was generally 3uC above the lowest primer Tm. An

amplification was labeled ‘‘negative’’ only after multiple failed

amplifications, but we acknowledge that the lack of amplification is

not conclusive proof of absence. For nested PCRs, outside

amplifications ran under the same conditions but employed 5

fewer cycles.

We used the TOPOH cloning kit with Mach1TM-T1R E. coli

strain chemically competent cells (Life Technologies, Carlsbad,

CA) to clone PCR products following manufacturer’s protocols.

We sequenced cloned PCR products on an Applied Biosystems

3730XL capillary sequencer, and edited resulting reads using an

in-house script to remove vector sequences and low quality base

calls. Alignments of forward and reverse sequences, and sequence

proofreading were done manually in Geneious ver. 5.4 Software

[44]. We assessed taxonomic assignments using the BLAST search

algorithm [45]. Sequences and MIMARKS compliant metadata

were deposited in the National Center for Biotechnology

Information’s (NCBI) GenBank under accession numbers

JX317526 - JX317619.

Amplicon Sequencing
Pyrosequencing methodologies for 16S rRNA gene amplicon

sequencing have been described previously [7,8,12,46] and were

performed on 2 samples each from stores A, D and E. Briefly, we

amplified the bacterial 16S rRNA gene hypervariable region

spanning the V3–V5 region in triplicate using a cocktail of 2

forward primers at the E. coli 16S rRNA gene position 341, and a

cocktail of three reverse primers at position 926 (Table S1),

yielding amplicons ,585 base pairs in length. We multiplexed our

sequencing reactions by using primers with an in-line 5-bp

barcode between the primer and the 19 nt Roche 454 A adaptor

[8,12]. Amplicons and negative controls were spin-column

purified using QIAquick PCR purification kit (Qiagen, Valencia,

CA) and sizes were confirmed on a Bioanalyzer 2100 (Agilent,

Palo Alto, CA) using a DNA1000 LabChip. Purified amplicons

were then brought through emPCR and sequenced on a Roche

GS-FLX pyrosequencer using GS FLX Titanium Series reagents

(Roche Diagnostics, Basel, Switzerland) following manufacturer’s

protocols.

We also performed separate pyrosequencing reactions using

Vibrio-specific primers on 2 samples each from stores A, D and E,

and a single sample from store B. Note that this run included a

single sample from a store (B) not included in the V3–V5 run. This

run was intended to deeply sample Vibrio diversity but resulting

amplicon taxonomy assignments fell broadly within the Gamma-

proteobacteria. Protocols for this run were identical to those

described above, except primers targeted the 518F and 680R

regions of E. coli (,120 nt) and were run using FLX reagents on

the Roche 454- GS-FLX. MIMARKS-compliant sequence data

have been deposited in NCBI’s normal and Sequence Read

Archives (SRA) under the accession number SRP013874, the

associated metadata can also be found in Table S4.
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Bioinformatics
We processed raw reads through the VAMPS pipeline [46], and

took the following quality control measures for GS-FLX titanium.

We removed reads if any of the following were true: (1) we

detected sequence mismatches to the expected 5-nt barcode or

proximal primer, (2) we observed an ambiguous base call (N)

anywhere in the read, (3) we could not find a match to the

conserved region used to trim all sequences to the same position in

16S rRNA gene alignment (59-CCCATAGATTAGG-39), (4) if the

trimmed length was below 375 nt, (5) if the average quality score

was below 30, (6) if the read was not identifiable by GAST as

having a percent identity of at least 70% to a known bacterial

sequence and, (7) if the read contained an gap or deletion in the

alignment to the nearest reference sequence of 10 nt or more.

Chimeras were removed using UCHIME [47] and 3% OTUs

were assigned using UCLUST as implemented in USEARCH v

5.1 [47]. Global Alignment Sequence Taxonomy (GAST)

algorithms assigned taxonomy to the most abundant read within

an OTU as described previously [12]. Briefly, each sequence that

completed the trimming and filtering steps was subjected to a

BLAST search against a local database created from high quality

reads from the SILVA-ARB archive [48]. The sequenced tag was

then aligned with MUSCLE [49] against its top 100 BLAST hits

and the GAST distance to each hit was calculated by adding the

number of insertions, deletions and mismatches over the total

length of the tag. All sequences from the reference database were

then queried for exact matches to the top GAST hit (not

necessarily the top BLAST hit), and the RDP taxonomic

classification of these exact matches were returned. If two thirds

of the classifications were the same taxonomic ID, then that

taxonomy was assigned to that tag.

We calculated alpha diversity using both phylogenetic diversity

(PD) and best-fit parametric based models using CatchAll [20].

Prior to phylogenetic diversity calculation we resampled data such

that all samples had equal sampling effort. Rarefaction randomly

subsamples species abundance tables down to the lowest number

among all samples, thus removing heterogeneity between samples

[50,51]. Phylogenetic diversity was then calculated as the

minimum total length of the phylogenetic branches required to

span all taxa within a given sample on a phylogenetic tree [52].

Since all sequences from a study are placed in the tree, this

estimate is not influenced by the particularities of sequence

clustering algorithms. We performed both rarefaction and

phylogenetic diversity estimates in Qiime v1.4.0 [19] using the

PD Whole Tree estimator.

Our phylogenetic diversity estimates showed strong evidence for

inter-store differences, however PD estimates are descriptive,

sample based only and do not allow extrapolation to a population.

To provide this additional context, we also calculated alpha

diversity using CatchAll 3.0 [20]. CatchAll computes a large range

of finite-mixture models and all known nonparametric and

parametric coverage-based estimates, and presents the model

which best fits each dataset, or the ‘best of the best’ fit model. It

also provides standard errors, goodness of fit and confidence

intervals for each estimate [20].

Visualizing Vibrio Diversity
Although the GAST strategy provides an efficient way to assign

taxonomy to our OTUs, it is quite conservative. To further refine

Vibrio taxonomy, we constructed a reference tree using selected

full-length Vibrio sequences from published isolates in the Silva

ARB 16S SSU_ref_102 rRNA database. To this reference tree we

added any OTU representative sequences returned from GAST

with at least a Vibrionaceae taxonomic assignment (24 OTUs

representing 12,175 sequences) using ARB’s quick-add-sequence-

to-tree parsimony. This method allowed us to visualize the

diversity of our Vibrio OTUs independent of the GAST

assignments (Figure 4).
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