420 research outputs found

    Millstone Hill coherent-scatter radar observations of electric field variability in the sub-auroral polarization stream

    Get PDF
    [1] Coherent backscatter observations with the Millstone Hill UHF radar (MHR) are used to investigate spatial/temporal variations in the ionospheric sub‐auroral polarization stream (SAPS) electric field. For the 440 MHz MHR, coherent amplitude is on average linearly proportional to electric field strength. The use of both main‐beam and sidelobe returns and the great sensitivity of the MHR system permits observations spanning 3° of the SAPS region with 1‐sec temporal and 10‐km spatial resolution. For a moderately disturbed event on May 25, 2000, the SAPS channel moved steadily equatorward. Large‐scale (30 mV/m peak to peak) wave‐like oscillations in the electric field magnitude (200s–300s periodicity) were seen to propagate across the SAPS channel throughout the hour‐long event. It is suggested that such localized electric field intensifications, which exhibit many of the characteristics of the narrow SAID features described in the literature, arise as wavelike perturbations within the SAPS channel

    On the proper reconstruction of complex dynamical systems spoilt by strong measurement noise

    Full text link
    This article reports on a new approach to properly analyze time series of dynamical systems which are spoilt by the simultaneous presence of dynamical noise and measurement noise. It is shown that even strong external measurement noise as well as dynamical noise which is an intrinsic part of the dynamical process can be quantified correctly, solely on the basis of measured times series and proper data analysis. Finally real world data sets are presented pointing out the relevance of the new approach

    Taking the Evolutionary Road to Developing an In-House Cost Estimate

    Get PDF
    This slide presentation reviews the process and some of the problems and challenges of developing an In-House Cost Estimate (IHCE). Using as an example the Space Network Ground Segment Sustainment (SGSS) project, the presentation reviews the phases for developing a Cost estimate within the project to estimate government and contractor project costs to support a budget request

    High precision differential abundance measurements in globular clusters: Chemical inhomogeneities in NGC 6752

    Get PDF
    We report on a strictly differential line-by-line analysis of high-quality UVES spectra of bright giants in the metal-poor globular cluster NGC 6752. We achieved high precision differential chemical abundance measurements for Fe, Na, Si, Ca, Ti, Cr, Ni,

    Multiradar observations of the polar tongue of ionization

    Get PDF
    [1] We present a global view of large‐scale ionospheric disturbances during the main phase of a major geomagnetic storm. We find that the low‐latitude, auroral, and polar latitude regions are coupled by processes that redistribute thermal plasma throughout the system. For the large geomagnetic storm on 20 November 2003, we examine data from the high‐latitude incoherent scatter radars at Millstone Hill, Sondrestrom, and EISCAT Tromso, with SuperDARN HF radar observations of the high‐latitude convection pattern and DMSP observations of in situ plasma parameters in the topside ionosphere. We combine these with north polar maps of stormtime plumes of enhanced total electron content (TEC) derived from a network of GPS receivers. The polar tongue of ionization (TOI) is seen to be a continuous stream of dense cold plasma entrained in the global convection pattern. The dayside source of the TOI is the plume of storm enhanced density (SED) transported from low latitudes in the postnoon sector by the subauroral disturbance electric field. Convection carries this material through the dayside cusp and across the polar cap to the nightside where the auroral F region is significantly enhanced by the SED material. The three incoherent scatter radars provided full altitude profiles of plasma density, temperatures, and vertical velocity as the TOI plume crossed their different positions, under the cusp, in the center of the polar cap, and at the midnight oval/polar cap boundary. Greatly elevated F peak density (>1.5E12 m[superscript −3]) and low electron and ion temperatures (∼2500 K at the F peak altitude) characterize the SED/TOI plasma observed at all points along its high‐latitude trajectory. For this event, SED/TOI F region TEC (150–1000 km) was ∼50 TECu both in the cusp and in the center of the polar cap. Large, upward directed fluxes of O+ (>1.E14 m[superscript −2] s[superscript −1]) were observed in the topside ionosphere from the SED/TOI plume within the cusp

    'It's Reducing a Human Being to a Percentage'; Perceptions of Justice in Algorithmic Decisions

    Full text link
    Data-driven decision-making consequential to individuals raises important questions of accountability and justice. Indeed, European law provides individuals limited rights to 'meaningful information about the logic' behind significant, autonomous decisions such as loan approvals, insurance quotes, and CV filtering. We undertake three experimental studies examining people's perceptions of justice in algorithmic decision-making under different scenarios and explanation styles. Dimensions of justice previously observed in response to human decision-making appear similarly engaged in response to algorithmic decisions. Qualitative analysis identified several concerns and heuristics involved in justice perceptions including arbitrariness, generalisation, and (in)dignity. Quantitative analysis indicates that explanation styles primarily matter to justice perceptions only when subjects are exposed to multiple different styles---under repeated exposure of one style, scenario effects obscure any explanation effects. Our results suggests there may be no 'best' approach to explaining algorithmic decisions, and that reflection on their automated nature both implicates and mitigates justice dimensions.Comment: 14 pages, 3 figures, ACM Conference on Human Factors in Computing Systems (CHI'18), April 21--26, Montreal, Canad

    Maternal Plasma 25-Hydroxyvitamin D Concentrations and the Risk for Gestational Diabetes Mellitus

    Get PDF
    Background: Evidence is accumulating for a role of vitamin D in maintaining normal glucose homeostasis. However, studies that prospectively examined circulating concentrations of 25-hydroxyvitamin D (25-[OH] D) in relation to diabetes risk are limited. Our objective is to determine the association between maternal plasma 25-[OH] D concentrations in early pregnancy and the risk for gestational diabetes mellitus (GDM). Methods: A nested case-control study was conducted among a prospective cohort of 953 pregnant women. Among them, 57 incident GDM cases were ascertained and 114 women who were not diagnosed with GDM were selected as controls. Controls were frequency matched to cases for the estimated season of conception of the index pregnancy. Results: Among women who developed GDM, maternal plasma 25-[OH] D concentrations at an average of 16 weeks of gestation were significantly lower than controls (24.2 vs. 30.1 ng/ml, P<0.001). This difference remained significant (3.62 ng/ml lower on average in GDM cases than controls (P value = 0.018)) after the adjustment for maternal age, race, family history of diabetes, and pre-pregnancy BMI. Approximately 33% of GDM cases, compared with 14% of controls (P<0.001), had maternal plasma 25-[OH] D concentrations consistent with a pre-specified diagnosis of vitamin D deficiency (<20 ng/ml). After adjustment for the aforementioned covariates including BMI, vitamin D deficiency was associated with a 2.66-fold (OR (95% CI): 2.66 (1.01–7.02)) increased GDM risk. Moreover, each 5 ng/ml decrease in 25-[OH] D concentrations was related to a 1.29-fold increase in GDM risk (OR (95% CI): 1.29 (1.05–1.60)). Additional adjustment for season and physical activity did not change findings substantially. Conclusions: Findings from the present study suggest that maternal vitamin D deficiency in early pregnancy is significantly associated with an elevated risk for GDM

    New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.

    Get PDF
    Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes

    The PHENIX Experiment at RHIC

    Full text link
    The physics emphases of the PHENIX collaboration and the design and current status of the PHENIX detector are discussed. The plan of the collaboration for making the most effective use of the available luminosity in the first years of RHIC operation is also presented.Comment: 5 pages, 1 figure. Further details of the PHENIX physics program available at http://www.rhic.bnl.gov/phenix
    corecore