8 research outputs found

    A Complex Genomic Rearrangement Involving the Endothelin 3 Locus Causes Dermal Hyperpigmentation in the Chicken

    Get PDF
    Dermal hyperpigmentation or Fibromelanosis (FM) is one of the few examples of skin pigmentation phenotypes in the chicken, where most other pigmentation variants influence feather color and patterning. The Silkie chicken is the most widespread and well-studied breed displaying this phenotype. The presence of the dominant FM allele results in extensive pigmentation of the dermal layer of skin and the majority of internal connective tissue. Here we identify the causal mutation of FM as an inverted duplication and junction of two genomic regions separated by more than 400 kb in wild-type individuals. One of these duplicated regions contains endothelin 3 (EDN3), a gene with a known role in promoting melanoblast proliferation. We show that EDN3 expression is increased in the developing Silkie embryo during the time in which melanoblasts are migrating, and elevated levels of expression are maintained in the adult skin tissue. We have examined four different chicken breeds from both Asia and Europe displaying dermal hyperpigmentation and conclude that the same structural variant underlies this phenotype in all chicken breeds. This complex genomic rearrangement causing a specific monogenic trait in the chicken illustrates how novel mutations with major phenotypic effects have been reused during breed formation in domestic animals

    Peptide-Loaded Microgels as Antimicrobial and Anti-Inflammatory Surface Coatings

    No full text
    Here we report on covalently immobilized poly(ethyl acrylate- co-methacrylic acid) microgels loaded with the host defense peptide KYE28 (KYEITTIHNLFRKLTHRLFRRNFGYTLR), which is derived from human heparin cofactor II, as well as its poly(ethylene glycol)-conjugated (PEGylated) version, KYE28PEG. Peptide loading and release, as well as the consequences of these processes on the microgel and peptide properties, were studied by in situ ellipsometry, confocal microscopy, zeta potential measurements, and circular dichroism spectroscopy. The results show that the microgel-peptide interactions are electrostatically dominated, thus promoted at higher microgel charge density, while PEGylation suppresses peptide binding. PEGylation also enhances the α-helix induction observed for KYE28 upon microgel incorporation. Additionally, peptide release is facilitated at physiological salt concentration, particularly so for KYE28PEG, which illustrates the importance of electrostatic interactions. In vitro studies on Escherichia coli show that the microgel-modified surfaces display potent antifouling properties in both the absence and presence of the incorporated peptide. While contact killing dominates at low ionic strength for the peptide-loaded microgels, released peptides also provide antimicrobial activity in bulk at a high ionic strength. Additionally, KYE28- and KYE28PEG-loaded microgels display anti-inflammatory effects on human monocytes. Taken together, these results not only show that surface-bound microgels offer an interesting approach for local drug delivery of host defense peptides but also illustrate the need to achieve high surface loads of peptides for efficient biological effects

    Nanoclay-induced bacterial flocculation for infection confinement

    No full text
    Effects of size and charge of anionic nanoclays on their interactions with bacteria-mimicking lipid membranes, bacterial lipopolysaccharide (LPS), and Gram-negative bacteria were investigated using ellipsometry, dynamic light scattering, ζ-potential measurements, and confocal microscopy combined with Live/Dead staining. Based on particle size and charge density, three different anionic hectorite nanoclays were employed, and investigated in the presence and absence of the net cationic human antimicrobial peptide LL-37 (LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES). In the absence of this peptide, the nanoclays were found not to bind to similarly anionic bacteria-mimicking model phospholipid membranes, nor to destabilize these. Similarly, while all nanoclays induced aggregation of Escherichia coli bacteria, the flocculated bacteria remained alive after aggregation. In contrast, LL-37 alone, i.e. in the absence of nanoclay particles, displays antimicrobial properties through membrane lysis, but does not cause bacterial aggregation in the concentration range investigated. After loading the nanoclays with LL-37, potent bacterial aggregation combined with bacterial membrane lysis was observed for all nanoclay sizes and charge densities. Demonstrating the potential of these combined systems for confinement of infection, LPS-induced NF-κB activation in human monocytes was found to be strongly suppressed after nanoclay-mediated aggregation, with a wide tolerance for nanoparticle size and charge density

    Interaction of Laponite with Membrane Components - Consequences for Bacterial Aggregation and Infection Confinement

    No full text
    The antimicrobial effects of Laponite nanoparticles with or without loading of the antimicrobial peptide LL-37 was investigated along with their membrane interactions. The study combines data from ellipsometry, circular dichroism, fluorescence spectroscopy, particle size/ζ potential measurements, and confocal microscopy. As a result of the net negative charge of Laponite, loading of net positively charged LL-37 increases with increasing pH. The peptide was found to bind primarily to the outer surface of the Laponite nanoparticles in a predominantly helical conformation, leading to charge reversal. Despite their net positive charge, peptide-loaded Laponite nanoparticles did not kill Gram-negative Escherichia coli bacteria or disrupt anionic model liposomes. They did however cause bacteria flocculation, originating from the interaction of Laponite and bacterial lipopolysaccharide (LPS). Free LL-37, in contrast, is potently antimicrobial through membrane disruption but does not induce bacterial aggregation in the concentration range investigated. Through LL-37 loading of Laponite nanoparticles, the combined effects of bacterial flocculation and membrane lysis are observed. However, bacteria aggregation seems to be limited to Gram-negative bacteria as Laponite did not cause flocculation of Gram-positive Bacillus subtilis bacteria nor did it bind to lipoteichoic acid from bacterial envelopes. Taken together, the present investigation reports several novel phenomena by demonstrating that nanoparticle charge does not invariably control membrane destabilization and by identifying the ability of anionic Laponite nanoparticles to effectively flocculate Gram-negative bacteria through LPS binding. As demonstrated in cell experiments, such aggregation results in diminished LPS-induced cell activation, thus outlining a promising approach for confinement of infection and inflammation caused by such pathogens
    corecore