19 research outputs found

    Identification of Genetically Intact HIV-1 Proviruses in Specific CD4+ T Cells from Effectively Treated Participants

    No full text
    Latent replication-competent HIV-1 persists in individuals on long-term antiretroviral therapy (ART). We developed the Full-Length Individual Proviral Sequencing (FLIPS) assay to determine the distribution of latent replication-competent HIV-1 within memory CD4+ T cell subsets in six individuals on long-term ART. FLIPS is an efficient, high-throughput assay that amplifies and sequences near full-length (∼9 kb) HIV-1 proviral genomes and determines potential replication competency through genetic characterization. FLIPS provides a genome-scale perspective that addresses the limitations of other methods that also genetically characterize the latent reservoir. Using FLIPS, we identified 5% of proviruses as intact and potentially replication competent. Intact proviruses were unequally distributed between T cell subsets, with effector memory cells containing the largest proportion of genetically intact HIV-1 proviruses. We identified multiple identical intact proviruses, suggesting a role for cellular proliferation in the maintenance of the latent HIV-1 reservoir

    Longitudinal genetic characterization reveals that Cell Proliferation Maintains a Persistent HIV Type 1 DNA Pool During Effective HIV Therapy

    No full text
     The stability of the human immunodeficiency virus type 1 (HIV-1) reservoir and the contribution of cellular proliferation to the maintenance of the reservoir during treatment are uncertain. Therefore, we conducted a longitudinal analysis of HIV-1 in T-cell subsets in different tissue compartments from subjects receiving effective antiretroviral therapy (ART).status: publishe

    Activation of HIV Transcription with Short-Course Vorinostat in HIV-Infected Patients on Suppressive Antiretroviral Therapy

    No full text
    <div><p></p><p>Human immunodeficiency virus (HIV) persistence in latently infected resting memory CD4+ T-cells is the major barrier to HIV cure. Cellular histone deacetylases (HDACs) are important in maintaining HIV latency and histone deacetylase inhibitors (HDACi) may reverse latency by activating HIV transcription from latently infected CD4+ T-cells. We performed a single arm, open label, proof-of-concept study in which vorinostat, a pan-HDACi, was administered 400 mg orally once daily for 14 days to 20 HIV-infected individuals on suppressive antiretroviral therapy (ART). The primary endpoint was change in cell associated unspliced (CA-US) HIV RNA in total CD4+ T-cells from blood at day 14. The study is registered at ClinicalTrials.gov (NCT01365065). Vorinostat was safe and well tolerated and there were no dose modifications or study drug discontinuations. CA-US HIV RNA in blood increased significantly in 18/20 patients (90%) with a median fold change from baseline to peak value of 7.4 (IQR 3.4, 9.1). CA-US RNA was significantly elevated 8 hours post drug and remained elevated 70 days after last dose. Significant early changes in expression of genes associated with chromatin remodeling and activation of HIV transcription correlated with the magnitude of increased CA-US HIV RNA. There were no statistically significant changes in plasma HIV RNA, concentration of HIV DNA, integrated DNA, inducible virus in CD4+ T-cells or markers of T-cell activation. Vorinostat induced a significant and sustained increase in HIV transcription from latency in the majority of HIV-infected patients. However, additional interventions will be needed to efficiently induce virus production and ultimately eliminate latently infected cells.</p><p>Trial Registration</p><p>ClinicalTrials.gov <a href="http://clinicaltrials.gov/ct2/show/NCT01365065" target="_blank">NCT01365065</a></p></div

    Changes in gene expression over the duration of study with most early changes occurring in T-cells.

    No full text
    <p>(A) ANOVA (F-test) heatmap of top 50 differentially expressed genes (DEGs) from matched donor supervised analysis (n = 9) comparing gene expression one, 14 and 84 days following the initial dose of vorinostat. Gene Expression was adjusted for baseline expression and represented as a gene-wise standardized expression (Z-score), with p-values<0.05. (B) Checkerboard map of differentially expressed genes 84 days after the initial dose of vorinostat (70 days post cessation of drug) compared to baseline showing the top 10 enriched pathways using gene subset enrichment analysis (GSEA) on the y-axis and leading edge analysis (gene members contributing most to enrichment) plotted along the x-axis. Scale represents log<sub>2</sub> fold change where red corresponds to up- and blue down-regulated genes respectively. (C) Pathway heatmap illustrates enrichment of gene expression in PBMC subsets at different timepoints compared to baseline. Red and blue represent up and down regulated expression of gene subsets respectively. (D) Checkerboard map of DEG at each timepoint compared to baseline. The cell subsets (modules) are plotted on the y-axis and gene members contributing to enrichment plotted on the x-axis. Scale represents log<sub>2</sub> fold change. Red and blue boxes represent up and down gene regulation respectively. mDC = myeloid cells; pDC = plasmacytoid dendritic cells; NK = natural killer cells.</p
    corecore