4 research outputs found

    Heart murmur with unusual diagnosis

    Get PDF
    This study was supported by Comunidad de Madrid through the programme AORTASANA‐CM; B2017/BMD‐3676 cofinanced by the European Social Fund.S

    Beyond the Warburg Effect: Oxidative and Glycolytic Phenotypes Coexist within the Metabolic Heterogeneity of Glioblastoma.

    Get PDF
    Glioblastoma (GBM) is the most aggressive primary brain tumor, with a median survival at diagnosis of 16–20 months. Metabolism represents a new attractive therapeutic target; however, due to high intratumoral heterogeneity, the application of metabolic drugs in GBM is challenging. We characterized the basal bioenergetic metabolism and antiproliferative potential of metformin (MF), dichloroacetate (DCA), sodium oxamate (SOD) and diazo-5-oxo-L-norleucine (DON) in three distinct glioma stem cells (GSCs) (GBM18, GBM27, GBM38), as well as U87MG. GBM27, a highly oxidative cell line, was the most resistant to all treatments, except DON. GBM18 and GBM38, Warburg-like GSCs, were sensitive to MF and DCA, respectively. Resistance to DON was not correlated with basal metabolic phenotypes. In combinatory experiments, radiomimetic bleomycin exhibited therapeutically relevant synergistic effects with MF, DCA and DON in GBM27 and DON in all other cell lines. MF and DCA shifted the metabolism of treated cells towards glycolysis or oxidation, respectively. DON consistently decreased total ATP production. Our study highlights the need for a better characterization of GBM from a metabolic perspective. Metabolic therapy should focus on both glycolytic and oxidative subpopulations of GSCs.post-print3439 K

    Primary Chemoradiotherapy Treatment (PCRT) for HER2+ and Triple Negative Breast Cancer Patients: A Feasible Combination

    No full text
    Primary systemic treatment (PST) downsizes the tumor and improves pathological response. The aim of this study is to analyze the feasibility and tolerance of primary concurrent radio–chemotherapy (PCRT) in breast cancer patients. Patients with localized TN/HER2+ tumors were enrolled in this prospective study. Radiation was delivered concomitantly during the first 3 weeks of chemotherapy, and it was based on a 15 fractions scheme, 40.5 Gy/2.7 Gy per fraction to whole breast and nodal levels I-IV. Chemotherapy (CT) was based on Pertuzumab–Trastuzumab–Paclitaxel followed by anthracyclines in HER2+ and CBDCA-Paclitaxel followed by anthracyclines in TN breast cancers patients. A total of 58 patients were enrolled; 25 patients (43%) were TN and 33 patients HER2+ (57%). With a median follow-up of 24.2 months, 56 patients completed PCRT and surgery. A total of 35 patients (87.5%) achieved >90% loss of invasive carcinoma cells in the surgical specimen. The 70.8% and the 53.1% of patients with TN and HER-2+ subtype, respectively, achieved complete pathological response (pCR). This is the first study of concurrent neoadjuvant treatment in breast cancer in which three strategies were applied simultaneously: fractionation of RT (radiotherapy) in 15 sessions, adjustment of CT to tumor phenotype and local planning by PET. The pCR rates are encouraging
    corecore