104,782 research outputs found

    Software-Engineering Process Simulation (SEPS) model

    Get PDF
    The Software Engineering Process Simulation (SEPS) model is described which was developed at JPL. SEPS is a dynamic simulation model of the software project development process. It uses the feedback principles of system dynamics to simulate the dynamic interactions among various software life cycle development activities and management decision making processes. The model is designed to be a planning tool to examine tradeoffs of cost, schedule, and functionality, and to test the implications of different managerial policies on a project's outcome. Furthermore, SEPS will enable software managers to gain a better understanding of the dynamics of software project development and perform postmodern assessments

    Nonuniversal Effects in the Homogeneous Bose Gas

    Full text link
    Effective field theory predicts that the leading nonuniversal effects in the homogeneous Bose gas arise from the effective range for S-wave scattering and from an effective three-body contact interaction. We calculate the leading nonuniversal contributions to the energy density and condensate fraction and compare the predictions with results from diffusion Monte Carlo calculations by Giorgini, Boronat, and Casulleras. We give a crude determination of the strength of the three-body contact interaction for various model potentials. Accurate determinations could be obtained from diffusion Monte Carlo calculations of the energy density with higher statistics.Comment: 24 pages, RevTex, 5 ps figures, included with epsf.te

    Pair Interaction Potentials of Colloids by Extrapolation of Confocal Microscopy Measurements of Collective Structure

    Full text link
    A method for measuring the pair interaction potential between colloidal particles by extrapolation measurement of collective structure to infinite dilution is presented and explored using simulation and experiment. The method is particularly well suited to systems in which the colloid is fluorescent and refractive index matched with the solvent. The method involves characterizing the potential of mean force between colloidal particles in suspension by measurement of the radial distribution function using 3D direct visualization. The potentials of mean force are extrapolated to infinite dilution to yield an estimate of the pair interaction potential, U(r)U(r). We use Monte Carlo (MC) simulation to test and establish our methodology as well as to explore the effects of polydispersity on the accuracy. We use poly-12-hydroxystearic acid-stabilized poly(methyl methacrylate) (PHSA-PMMA) particles dispersed in the solvent dioctyl phthalate (DOP) to test the method and assess its accuracy for three different repulsive systems for which the range has been manipulated by addition of electrolyte.Comment: 35 pages, 14 figure

    Formation time distribution of dark matter haloes: theories versus N-body simulations

    Full text link
    This paper uses numerical simulations to test the formation time distribution of dark matter haloes predicted by the analytic excursion set approaches. The formation time distribution is closely linked to the conditional mass function and this test is therefore an indirect probe of this distribution. The excursion set models tested are the extended Press-Schechter (EPS) model, the ellipsoidal collapse (EC) model, and the non-spherical collapse boundary (NCB) model. Three sets of simulations (6 realizations) have been used to investigate the halo formation time distribution for halo masses ranging from dwarf-galaxy like haloes (M=10−3M∗M=10^{-3} M_*, where M∗M_* is the characteristic non-linear mass scale) to massive haloes of M=8.7M∗M=8.7 M_*. None of the models can match the simulation results at both high and low redshift. In particular, dark matter haloes formed generally earlier in our simulations than predicted by the EPS model. This discrepancy might help explain why semi-analytic models of galaxy formation, based on EPS merger trees, under-predict the number of high redshift galaxies compared with recent observations.Comment: 7 pages, 5 figures, accepted for publication in MNRA

    What determine firms’ capital structure in China?

    Get PDF
    Purpose – This paper investigates the determinants of capital structure using a cross-section sample of 1481 non-financial firms listed on the Chinese stock exchanges in 2011. Design/methodology/approach – Employing four leverage measures (total leverage and long-term leverage in terms of both book value and market value, respectively), this study examines the effects of factors with proven influences on capital structure in literature, along with industry effect and ownership effect. Findings – We find that large firms favour debt financing while profitable firms rely more on internal capital accumulation. Intangibility and business risk increase the level of debt financing but tax has little impact on capital structure. We also observe strong industrial effect and ownership effect. Real estate firms borrow considerably more and firms from utility and manufacturing industries use more long-term debt despite compared with commercial firms. On the other hand, firms with state ownership tend to borrow more, while firms with foreign ownership choose more equity financing. Research limitations – The study uses cross-section data to avoid any potential time effects, which allows us to focus on our main research question – to identify the determinants of capital structure for Chinese firms. Future research may gain more insights using panel data and considering other factors such as crisis and financial reforms. Practical implications – These results may provide important implications to investors in making investment decision and to firms in making financing decisions. Originality/value – this paper uses by far the largest and latest cross-section sample from the Chinese stock markets, offering a more complete picture of the financing behaviours in the Chinese firms, with known characters and the impact of ownerships

    Higgs-Yukawa model on the lattice

    Full text link
    We present results from two projects on lattice calculations for the Higgs-Yukawa model. First we report progress on the search of first-order thermal phase transitions in the presence of a dimension-six operator, with the choices of bare couplings that lead to viable phenomenological predictions. In this project the simulations are performed using overlap fermions to implement the required chiral symmetry. Secondly, our study for applying finite-size scaling techniques near the Gaussian fixed point of the Higgs-Yukawa model is presented. We discuss the analytical formulae for the Higgs Yukawa model and show results for a first numerical study in the pure O(4)O(4) scalar sector of the theory.Comment: 8 pages, 4 figures; Contribution to the proceedings of the 35th International Symposium on Lattice Field Theory, 18 - 24 June 2017, Granada, Spai
    • …
    corecore