17 research outputs found

    Non-Uniform Sampling Reconstruction for Symmetrical NMR Spectroscopy by Exploiting Inherent Symmetry

    Full text link
    Symmetrical NMR spectroscopy constitutes a vital branch of multidimensional NMR spectroscopy, providing a powerful tool for the structural elucidation of biological macromolecules. Non-Uniform Sampling (NUS) serves as an effective strategy for averting the prohibitive acquisition time of multidimensional NMR spectroscopy by only sampling a few points according to NUS sampling schedules and reconstructing missing points via algorithms. However, current sampling schedules are unable to maintain the accurate recovery of cross peaks that are weak but important. In this work, we propose a novel sampling schedule termed as SCPG (Symmetrical Copy Poisson Gap) and employ CS (Compressed Sensing) methods for reconstruction. We theoretically prove that the symmetrical constraint, apart from sparsity, is implicitly implemented when SCPG is combined with CS methods. The simulated and experimental data substantiate the advantage of SCPG over state-of-the-art 2D Woven PG in the NUS reconstruction of symmetrical NMR spectroscopy.Comment: 30 pages, 6 figure

    High-Resolution Reconstruction for Diffusion-Ordered NMR Spectroscopy.

    Get PDF
    Diffusion-ordered NMR spectroscopy (DOSY) presents an essential tool for the analysis of compound mixtures by revealing intrinsic diffusion behaviors of mixed components. The applicability of DOSY measurements on complex mixtures is generally limited by the performance of data reconstruction algorithms. Here, based on constraints on low rank and sparsity of DOSY data, we propose a reconstruction method to achieve high-resolution DOSY spectra with excellent peak alignments and accurate diffusion coefficients for measurements of complex mixtures even when component signals are congested and mixed together along the spectral dimension. This proposed method is robust and suitable for DOSY data acquired from common commercial NMR instruments; thus, it may broaden the scope of DOSY applications

    A Design Method on Durable Asphalt Pavement of Flexible Base on Anti-Rutting Performance and Its Application

    No full text
    To solve the durability of flexible base asphalt pavement, especially its anti-rutting problem, a design method on durable asphalt pavement of flexible base on anti-rutting performance was put forward in the paper, based on many experiments and calculations. Firstly, a method that asphalt could be selected according to penetration and the anti-rutting factor of its base asphalt was found, which solved the problem of the asphalt selection of the flexible base asphalt mixture design. Meanwhile, a method of skeleton-density structure gradation design was proposed based on the fractal void ratio of coarse aggregate, fractal volume of fine aggregate in coarse aggregate, penetration, fractal dimension of gradation particle size, and rutting tests, which effectively solved in advance the rutting and fatigue performance of flexible base asphalt mixtures. Then, on the basis of the fatigue damage, a calculation method of fatigue life was suggested, which solved the problem that the fatigue damage of asphalt mixtures rarely considered the combined effects of creep damage and fatigue damage. In addition, a calculation method of rutting was formulated based on vehicle dynamic load and ANSYS 16.0 software. Lastly, the feasibility of the design method on durable asphalt pavement of flexible base on anti-rutting performance was verified combining with the real engineering of a supporting project and several numerical calculations and tests

    Multi-Resolution Mapping and Accuracy Assessment of Forest Carbon Density by Combining Image and Plot Data from a Nested and Clustering Sampling Design

    No full text
    Combining sample plot and image data has been widely used to map forest carbon density at local, regional, national and global scales. When mapping is conducted using multiple spatial resolution images at different scales, field observations have to be collected at the corresponding resolutions to match image values in pixel sizes. Given a study area, however, to save time and cost, field observations are often collected from sample plots having a fixed size. This will lead to inconsistency of spatial resolutions between sample plots and image pixels and impede the mapping and product quality assessment. In this study, a methodological framework was proposed to conduct mapping and accuracy assessment of forest carbon density at four spatial resolutions by combining remotely sensed data and reference values of sample plots from a systematical, nested and clustering sampling design. This design led to one field observation dataset at a 30 m spatial resolution sample plot level and three other reference datasets by averaging the observations from three, five and seven sample plots within each of 250 m and 500 m sub-blocks and 1000 m blocks, respectively. The datasets matched the pixel values of a Landsat 8 image and three MODIS products. A sequential Gaussian co-simulation (SGCS) and a sequential Gaussian block co-simulation (SGBCS), an upscaling algorithm, were employed to map forest carbon density at the spatial resolutions. This methodology was tested for mapping forest carbon density in Huang-Feng-Qiao forest farm of You County in Eastern Hunan of China. The results showed that: First, all of the means of predicted forest carbon density values at four spatial resolutions fell in the confidence intervals of the reference data at a significance level of 0.05. Second, the systematical, nested and clustering sampling design provided the potential to obtain spatial information of forest carbon density at multiple spatial resolutions. Third, the relative root mean square error (RMSE) of predicted values at the plot level was much greater than those at the sub-block and block levels. Moreover, the accuracies of the up-scaled estimates were much higher than those from previous studies. In addition, at the same spatial resolution, SGCSWA (scaling up the SGCS and Landsat derived 30 m resolution map using a window average (WA)) resulted in smallest relative RMSEs of up-scaled predictions, followed by combinations of Landsat images and SGBCS. The accuracies from both methods were significantly greater than those from the combinations of MODIS images and SGCS. Overall, this study implied that the combinations of Landsat 8 images and SGCSWA or SGBCS with the systematical, nested and clustering sampling design provided the potential to formulate a methodological framework to map forest carbon density and conduct accuracy assessment at multiple spatial resolutions. However, this methodology needs to be further refined and examined in other forest landscapes

    Improving Selection of Spectral Variables for Vegetation Classification of East Dongting Lake, China, Using a Gaofen-1 Image

    No full text
    There is a large amount of remote sensing data available for land use and land cover (LULC) classification and thus optimizing selection of remote sensing variables is a great challenge. Although many methods such as Jeffreys–Matusita (JM) distance and random forests (RF) have been developed for this purpose, the existing methods ignore correlation and information duplication among remote sensing variables. In this study, a novel approach was proposed to improve the measures of potential class separability for the selection of remote sensing variables by taking into account correlations among the variables. The proposed method was examined with a total of thirteen spectral variables from a Gaofen-1 image, three class separability measures including JM distance, transformed divergence and B-distance and three classifiers including Bayesian discriminant (BD), Mahalanobis distance (MD) and RF for classification of six LULC types at the East Dongting Lake of Hunan, China. The results showed that (1) The proposed approach selected the first three spectral variables and resulted in statistically stable classification accuracies for three improved class separability measures. That is, the classification accuracies using three or more spectral variables statistically did not significantly differ from each other at a significant level of 0.05; (2) The statistically stable classification accuracies obtained by integrating MD and BD classifiers with the improved class separability measures were also statistically not significantly different from those by RF; (3) The numbers of the selected spectral variables using the improved class separability measures to create the statistically stable classification accuracies by MD and BD classifiers were much smaller than those from the original class separability measures and RF; and (4) Three original class separability measures and RF led to similar ranks of importance of the spectral variables, while the ranks achieved by the improved class separability measures were different due to the consideration of correlations among the variables. This indicated that the proposed method more effectively and quickly selected the spectral variables to produce the statistically stable classification accuracies compared with the original class separability measures and RF and thus improved the selection of the spectral variables for the classification

    High-resolution reconstruction for multidimensional laplace NMR

    No full text
    Abstract As a perfect complement to conventional NMR that aims for chemical structure elucidation, Laplace NMR constitutes a powerful technique to study spin relaxation and diffusion, revealing information on molecular motions and spin interactions. Different from conventional NMR adopting Fourier transform to deal with the acquired data, Laplace NMR relies on specially designed signal processing and reconstruction algorithms resembling the inverse Laplace transform, and it generally faces severe challenges in cases where high spectral resolution and high spectral dimensionality are required. Herein, based on the tensor technique for high-dimensional problems and the sparsity assumption, we propose a general method for high-resolution reconstruction of multidimensional Laplace NMR data. We show that the proposed method can reconstruct multidimensional Laplace NMR spectra in a high-resolution manner for exponentially decaying relaxation and diffusion data acquired by commercial NMR instruments. Therefore, it would broaden the scope of multidimensional Laplace NMR applications

    Nupr1 Modulates Methamphetamine-Induced Dopaminergic Neuronal Apoptosis and Autophagy through CHOP-Trib3-Mediated Endoplasmic Reticulum Stress Signaling Pathway

    No full text
    Methamphetamine (METH) is an illegal and widely abused psychoactive stimulant. METH exposure causes detrimental effects on multiple organ systems, primarily the nervous system, especially dopaminergic pathways, in both laboratory animals and humans. In this study, we hypothesized that Nuclear protein 1 (Nupr1/com1/p8) is involved in METH-induced neuronal apoptosis and autophagy through endoplasmic reticulum (ER) stress signaling pathway. To test this hypothesis, we measured the expression levels of Nupr1, ER stress protein markers CHOP and Trib3, apoptosis-related protein markers cleaved-caspase3 and PARP, as well as autophagy-related protein markers LC3 and Beclin-1 in brain tissues of adult male Sprague-Dawley (SD) rats, rat primary cultured neurons and the rat adrenal pheochromocytoma cells (PC12 cells) after METH exposure. We also determined the effects of METH exposure on the expression of these proteins after silencing Nupr1, CHOP, or Trib3 expression with synthetic small hairpin RNA (shRNA) or siRNA in vitro, and after silencing Nupr1 in the striatum of rats by injecting lentivirus containing shRNA sequence targeting Nupr1 gene to rat striatum. The results showed that METH exposure increased Nupr1 expression that was accompanied with increased expression of ER stress protein markers CHOP and Trib3, and also led to apoptosis and autophagy in rat primary neurons and in PC12 cells after 24 h exposure (3.0 mM), and in the prefrontal cortex and striatum of rats after repeated intraperitoneal injections (15 mg/kg × 8 injections at 12 h intervals). Silencing of Nupr1 expression partly reduced METH-induced apoptosis and autophagy in vitro and in vivo. These results suggest that Nupr1 plays an essential role in METH-caused neuronal apoptosis and autophagy at relatively higher doses and may be a potential therapeutic target in high-dose METH-induced neurotoxicity
    corecore