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ABSTRACT: Diffusion-ordered NMR spectroscopy (DOSY)
presents an essential tool for the analysis of compound mixtures
by revealing intrinsic diffusion behaviors of mixed components.
The applicability of DOSY measurements on complex mixtures is
generally limited by the performance of data reconstruction
algorithms. Here, based on constraints on low rank and sparsity
of DOSY data, we propose a reconstruction method to achieve
high-resolution DOSY spectra with excellent peak alignments and
accurate diffusion coefficients for measurements of complex
mixtures even when component signals are congested and mixed
together along the spectral dimension. This proposed method is
robust and suitable for DOSY data acquired from common commercial NMR instruments; thus, it may broaden the scope of
DOSY applications.

Nuclear magnetic resonance (NMR)1 constitutes a
commonly used technique for compound identification,2

quantitative detection,3 and structural analysis4 in complex
mixtures. Diffusion-ordered NMR spectroscopy (DOSY)5,6

presents an effective tool for identifying chemical substances in
mixtures and detecting intermolecular interactions7 by differ-
entiating NMR signals of a compound mixture according to
differences in the molecular translational diffusion. The
validation of the resulting DOSY spectra significantly depends
on effective data reconstruction algorithms. The most essential
functions of DOSY are to resolve overlapping peaks, separate
signals from different compounds, and group signals that
belong to the identical molecule. Correspondingly, perform-
ance of the DOSY reconstruction algorithm is evaluated by the
alignment of peaks from the same molecule and the
distinguishment of individual peaks (i.e., spectral resolution).
A high-resolution DOSY spectrum8 should have excellent peak
alignment and narrow peak width in diffusion dimension.
Unfortunately, these two objectives in high-resolution DOSY
are difficult to achieve concurrently, particularly for measure-
ments of complex mixtures that contain congested 1D NMR
resonances.
DOSY reconstruction methods are roughly divided into two

categories, namely exponential fitting and inverse Laplace
transform. Exponential fitting, including SPLMOD (spline
model),9,10 CORE (component resolved NMR spectrosco-
py),11 DECRA (direct exponential curve resolution algo-
rithm),12,13 SCORE (speedy component resolved NMR
spectroscopy),14 and MRC (multivariate curve resolution),15,16

among others,17 requires the accurate number of molecular
components in advance, which generally leads to unstable and
invalid reconstruction spectra if inaccurate number estimation

of molecular components is provided. Different from
exponential fitting, the inverse Laplace transform dispenses
with the number of molecular components as a prerequisite.
These methods are implemented based on the fact that decay
signals along the gradient dimension and diffusion distribution
signals along the diffusion dimension constitute a Laplace
transform pair18 (i.e., diffusion distribution signals are the
Laplace transform of the gradient field decay signals). Many
optimization methods for solving the inverse problem have
been proposed for DOSY reconstruction, such as the non-
negative least-squares (NNLS) method,19 Tikhonov regulari-
zation method,20 constrained regularization (CONTIN),20,21

entropy maximization (MaxEnt),22 iterative thresholding
algorithm for multiexponential decay (ITAMed),23 sparse
and Tikhonov combined regularization method,24 and
others.25,26 These methods are basically designed for 1D
reconstruction. Therefore, to obtain the 2D DOSY spectrum,
each row of the spectrum corresponding to each frequency
component is reconstructed individually, which would induce
misalignment of peaks in the diffusion dimension due to
inevitable computational errors. To address this issue, Yuan et
al. proposed a 2D method called simultaneous inversion of
Laplace transform (SILT),27 which exploits the low-rank
property of 2D DOSY spectrum data and uses nuclear norm
for regularization constraint. The 2D low-rank property works
like a spectral comb to increase peak alignment along the
diffusion dimension but with an undesirable effect of peak
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broadening and might even induce some artifacts under the
worst-case scenario, which does not satisfy the criteria of high-
resolution DOSY. From Figure 1(a) and (b), it can be seen

that peak broadening in reconstructed spectra by SILT
increases the difficulty in distinguishing molecular components
with close diffusion coefficients.
In this work, we propose a general 2D inverse Laplace

transform method, called low-rank and sparse inverse Laplace
transform (LRSpILT), for high-resolution DOSY reconstruc-
tion on complex mixtures. This method is designed based on
the joint constraints on low-rank and sparsity of DOSY
data28,29 to achieve excellent peak alignment and accurate
diffusion coefficient estimation with narrow peak width in the
diffusion dimension, thus leading to high-resolution DOSY
reconstruction. As Figure 1 (c) and (d) show, LRSpILT
maintains the alignment of peaks with the same diffusion
coefficients and gives results with narrowed peaks in the
diffusion dimension, which represents reduced estimation
uncertainty of diffusion coefficients. The resulting spectra
present significantly improved resolution and satisfactory
distinguishment between adjacent peaks compared to SILT.

■ METHODS
A pulse field gradient (PFG) signal is a kind of decay signal
similar to relaxation signals that decay with evolution time. To
obtain the decay rates of these signals, one should apply
inverse Laplace transform (ILT) or exponential fitting instead
of Fourier transform, which is suitable for analysis of frequency
but not decay rate (detailed in Supporting Information).
Exponential fitting methods aim to obtain decay rates by

minimizing the error between acquired signal and exponential
fitting model, which can be modeled as

x e s tmin ( )
x i

N

i
t

,
1 2

i i

i∑ −
α

α

=

−

(1)

where t p∈ is the evolution time vector with p time points,
s t( ) p∈ is the acquired decay signal vector, xi and αi are
estimated intensity and decay rate of the i-th exponential decay
component, respectively, and N is the number of exponential
decay components, which is 1 for monoexponential fitting and
2 for double exponential fitting. For signals decaying with

gradient strength, e.g. the DOSY signal, the objective function
is modified as
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where g is the gradient vector. Without loss of generality, we
apply the model of the gradient field decay signal for the rest of
the paper. Eq 2 requires a given N to perform the fitting, and
different N would lead to different results.
To relax the assumption of the exponential fitting method,

ILT implements a different strategy, where the specific values
of αi are not required to be estimated but given as grid points
on the range of interest, and N is the number of grid points.
Then, eq 2 can be reformulated into the matrix form:

Kx smin
x

2
2|| − ||

(3)

where K p N∈ × , each column of K represents one
exponential decay component, and x = [x1, x2, ..., xN]

T

represents the intensities or contributions of each component.
We can infer by eq 3 that ILT decomposes PFG signal s into a
group of exponential decay signals, like Fourier transform
decomposes signals into a group of frequency signals. But,
different from the linear and unitary Fourier transform, the ILT
problem is ill-posed, which means there are infinite number of
possible solutions for eq 3. For this reason, more constraints
should be given to the estimated solution to ensure a
reasonable result.
LRSpILT penalizes the rank and data intensities of the

reconstructed spectra to control the level of complexity of the
result. Thus, the result for LRSpILT should possess the
property of joint Low-Rank and sparsity, which suggests that
our desired result should be composed of less exponential
decay components and these components should be well-
aligned. The optimization model29 of LRSpILT is

X KX S X Xarg min
1
2 F b

X 0
A

2
1 , 2 1,λ λ= || − || + || ||* + || ||

≻̲
(4)

where S p m∈ × is the 2D discretized gradient field decay
signal, which can be easily obtained from the FID data with 1D
Fourier transform. X N m∈ × is the estimated DOSY spectra
data matrix. X ≻̲ 0 constrains non-negativity of all elements in
X. ∥•∥*,b is the weighted nuclear norm with the weighted
factor vector b r∈ , which constrains the low-rank of X. The
weighted nuclear norm is defined as

bX
i

r

i ib,
1

∑ σ|| ||* =
=

where σi is the i-th singular value of X, and r is the rank of X.
∥•∥1,A is the weighted 1 norm of the matrix, and A is the
weighted factor matrix which constrains the sparsity of X. λ1
and λ2 denote the regularized parameters, which trade off
fidelity, low-rank, and sparsity of X. A more detailed discussion
on the proposed model and its relation to other methods is
given in the Supporting Information.
Proper setting of λ1 and λ2 is vital for high-resolution

reconstruction. Generally, good choices of λ1 and λ2 would be
in the range of ∼10−4 to 10−1. Both values of λ1 and λ2 might
need to be modified according to the specific case. When
trying to adjust these two parameters, one can begin with λ2 =

Figure 1. Reconstructed spectra of SILT and LRSpILT on two
simulated data sets. SILT results of mixture 1 (a) and mixture 2 (b).
LRSpILT results of mixture 1 (c) and mixture 2 (d). Red circles
denote ideal peak positions. Simulated data parameters are detailed in
the Supporting Information.
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0 or a small number, and adjust λ1 to obtain a spectrum with
good peak alignment. Then, one can enlarge λ2 until the
spectral resolution is acceptable, which means all the diffusion
groups are well-resolved. It is important that λ2 should not be
too large, otherwise essential peaks might disappear or shrink
in the spectra. More detailed discussions and demonstrations
on the effects of λ1 and λ2 are given in the Supporting
Information.
We exploit the Alternative Direction Multiplier Method

(ADMM)29 to solve eq 4, and the corresponding mathematical
derivation is given in the Supporting Information. Our
algorithm is programed in Matlab R2016b, and the source
codes are available upon the request by emailing the authors
and can also be downloaded from ref 30 for free.
Although LRSpILT is devised specifically for high-resolution

DOSY reconstruction, it might also fit for other analyses of
exponential decay signals such as Altered Relaxation Times
Allow Detection of Exchange Correlation (NMR ARTDECO)
spectra,31 low field NMR T2 distribution, and high field 1H
NMR T2 relaxation signals.

■ EXPERIMENTAL SECTION

To evaluate the performance in a practical situation, we tested
the proposed method on two experimental data sets. The first
experimental data set is named QGC,32 consisting of quinine
(100 mM/L), geraniol (100 mM/L), and camphene (200
mM/L) dissolved in deuterated methanol. The pulsed field
gradient experiments were performed at 297 K on a Varian 500
MHz spectrometer equipped with a 5 mm XYZ indirect
detection probe. The “BPPSTE” DOSY pulse sequence was
used with the diffusion delay 0.04 s and a net diffusion-
encoding pulse width of 2 ms. Twenty-five diffusion gradients
GD were applied with the incremental amplitudes from 1.46 to
40.62 G/cm. A spectral width of 12 ppm was used, and 16 384
complex data points were acquired with 64 scans for each
gradient strength, acquisition time of 1.99 s, and relaxation
delay of 2.0 s. A total of 65 536 complex data points were
Fourier transformed using a Gaussian window with a line
broadening value of 1.0 Hz. Only the spectral region 2−14
ppm was displayed.
The second experimental data set named M627 consisting of

methanol (2 μL), ethanol (4 μL), 1-butanol (8 μL), threonine
(11.12 mg), lysine (12.58 mg), and sucrose (21.16 mg)
dissolved in D2O (450 μl) was prepared. The pulsed field
gradient experiments were performed at 298 K on another
Bruker AVANCE 600 spectrometer equipped with a CryoP-
robe (1 H frequency 600.13 MHz). The Bruker pulse sequence
‘‘ledbpgppr2s” was used with diffusion delay 0.16 s and a net
diffusion-encoding pulse width (d) of 2 ms. Water signal was
suppressed with presaturation. 32 gradient strengths ranging
from 1.465 to 46.4 G/cm were chosen to give linear space in
nominal gradient. A spectral width of 20 ppm was used, and
16 384 complex data points were acquired with 8 scans for
each gradient strength, acquisition time of 1.363 s, and
relaxation delay of 2.5 s. A total of 65 536 complex data points
were Fourier transformed using an exponential window with a
line broadening value of 0.5 Hz. Only the spectral region 0.5−
5.5 ppm was displayed.

■ RESULTS AND DISCUSSION

Figure 2 shows results of monoexponential fitting,25 SILT,27

and LRSpILT on experimental data of mixture QGC.32 From

Figure 2(a), it can be seen that spectral peaks of
monoexponential fitting reconstructed spectra have some
deviation from the reference lines and even artifacts, which
might give rise to incorrect analysis of molecular components.
From the comparison, it is clear that peaks are broadened
along the diffusion dimension, and serious peak overlapping is
observed in the SILT reconstructed spectra (Figure 2b), while
peak broadening is effectively suppressed. All peaks are well-
distinguished along the diffusion dimension in the LRSpILT
spectra. It is worth noting that peak alignments are maintained
well in both SILT and LRSpILT spectra. From 1D projection
spectra on the diffusion dimension, we can intuitively observe
that monoexponential fitting leads to small diffusion artifacts
(Figure 2 (a)) which are due to the peak misalignment in the
diffusion dimension, and SILT cannot perform well for the
separation of three molecular components due to the peak
broadening (Figure 2 (b)). The LRSpILT result can show
exactly three well-separated peak groups corresponding to the
three molecular components.
For further quantitative analysis, we define reconstructed

spectra resolution (RcSR) to measure the resolution of
reconstructed spectral peaks in the diffusion coefficient
dimension, formulated as eq 5:

RcSR
1

WHH
=

(5)

where WHH denotes width at half height of the peak. It should
be mentioned that we do not compare the RcSR of
monoexponential fitting results with that of LRSpILT, as
these two methods have totally different mechanisms. The
monoexponential fitting method involves univariate processing,
and it processes each decay signal individually and generates a
pseudo-2D spectrum, where each peak is generated in

Figure 2. Reconstructed spectra for experimental data QGC with (a)
monoexponential fitting, (b) SILT, and (c) LRSpILT. Areas marked
by the red rectangular are of overlapping peaks. Artifacts in (b) and
(c) are marked with black arrows. Highlighted areas are projected
onto the diffusion coefficient dimension and shown in Figure S4 of
the Supporting Information. The center diffusion coefficient values of
components are marked with gray dashed lines.
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Gaussian line shape with the line width determined by the
statistics of the fitting.25 In contrast, for the inverse Laplace
transform-based methods, SILT and our proposed LRSpILT
involve multivariate processing and generate the whole spectra
simultaneously with no constraint on the line shape of each
peak. Therefore, only spectral resolutions and spectra of
separated 1D components (Figure 3 and Figure 5) of the SILT
and LRSpILT are compared.

The WHHs of corresponding spectral peaks in SILT and
LRSpILT reconstructed spectra as highlighted in Figure 2 (b)
and (c) are 4 and 1.1 (10−10 m2s−1), respectively (detailed
projected peak analysis is shown in Figure S4 in the Supporting
Information). Therefore, for this case, the RcSR of LRSpILT
reconstructed spectra is approximately 3.64 times greater than
that of SILT reconstructed spectra. It indicates that LRSpILT
reduces the peak line width (or uncertainty) attributed to the
penalty of 1 norm in eq 4 to encourage a sparse result, which
means a narrowed peak and simplified spectra. Further analysis
of molecular components can be performed by extracting
spectra of each molecular component.
From spectra of separated 1D components shown in Figure

3, we can see that there are clearly some artifacts in SILT
results (Figure 3 (b)), while LRSpILT results present more

accurate diffusion measurements with higher resolution in the
diffusion dimension (Figure 3 (c)).
It is noteworthy that for 1D component separation of SILT

reconstructed spectra, because of low spectral resolution, the
non-negative matrix factorization (NMF) method33 is usually
applied which would introduce extra computational error and
instability due to the nonconvexity of NMF, while NMF is
unnecessary for LRSpILT results analysis because the 1D
spectra can be directly extracted by summarizing a small range
across the center diffusion coefficient values (marked with gray
dashed lines in Figures 2 and 4) attributed to high spectral
resolution and well-separated molecular components.

Figure 4 shows DOSY reconstruction spectra of M6 with
monoexponential fitting,25 SILT,27 and LRSpILT. The
monoexponential fitting result shows artifacts and scattered
spectral peaks (Figure 4 (a)), which lead to errors of spectral
components classification and affect further analysis. SILT
reconstructed spectral peaks are well-aligned, but peak
broadening is observed in the diffusion dimension, resulting
in overlap of adjacent peaks (Figure 4 (b)). Compared to the
SILT result, the LRSpILT result (Figure 4 (c)), presenting
high-resolution DOSY manner with narrow spectral peaks and
excellent peak alignments, can reduce artifacts and provide
more accurate diffusion interpretation of the data.
From the 1D projection spectra along the diffusion

dimension, it is clear that monoexponential fitting result
(Figure 4 (a)) has many artifacts, which might lead to an
overestimation of the number of components in the mixture,
and SILT result (Figure 4 (b)) cannot clearly distinguish the
six components due to the spectral broadening. As a
comparison, these six components are clearly distinguished
from the 1D projection spectrum of LRSpILT reconstructed
spectra (Figure 4 (c)), except that the methanol peak is weak
because of its relatively small amount in the mixture. The RcSR

Figure 3. 1H spectra of mixture QGC. (a) Reference spectra of three
components: quinine, geraniol, and camphene. (b) Resolved spectra
of the three components by SILT. (c) Resolved spectra of the three
components by LRSpILT. In (b), artifacts are marked with black
arrows. Panels (b) and (c) are both extracted by summarizing a small
range across the center diffusion coefficient value (marked with gray
dashed lines in Figure 2) for comparison.

Figure 4. Reconstructed spectra for experimental data M6 with (a)
monoexponential fitting, (b) SILT, and (c) LRSpILT. A missing peak
in (b) is marked with a red circle. Artifacts in (b) and (c) are marked
with black arrows. Areas surrounded by a red rectangular are
overlapped peaks. The center diffusion coefficient values of
components are marked with gray dashed lines.
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analysis (detailed in Supporting Information) implies that the
resolution of LRSpILT reconstructed spectra is approximately
2.23 times higher than that of SILT.
Component separation analysis (Figure 5) shows that

LRSpILT significantly reduces artifacts compared to the

SILT. However, we also note that the spectral peaks of
LRSpILT shrink in several positions. Two main reasons of this
peak shrinkage are as follows. First, sparse regularization
constraint tends to obtain narrower peaks which better satisfy
sparse assumption. Second, to improve the reconstruction
efficiency, a threshold operation is performed before the
reconstruction, i.e. the spectral points below threshold are set
to zero, which would cause the shrinkage of peaks. However,
the narrowing of some peak normally does not affect the
following distinguishment of mixture components. In some
cases, if the shrinkage of peaks is unacceptable, one could
decrease the sparsity regularization parameter λ2 in eq 3 or
lower the threshold value before the reconstruction.

■ CONCLUSIONS
In conclusion, we propose a DOSY reconstruction approach,
LRSpILT, to obtain 2D high-resolution DOSY spectra with
excellent peak alignment and narrow spectral peaks for
measurements of complex mixtures. Simulated and exper-
imental results suggest that the proposed method enjoys an
advantage of high spectral resolution along the diffusion
dimension. Further extraction of component molecular signals
from reconstructed spectra demonstrates that the proposed
method is robust and accurate for the analysis of the
compound mixture, even when its component signals are
congested and mixed together along the spectral dimension.
Further, this method can be robustly applied to DOSY data
acquired from standard commercial NMR instruments for
high-resolution DOSY reconstruction. Therefore, it might
broaden the scope of DOSY applications for identification and
analysis of complex mixtures that contain congested or even
overlapped NMR resonances.
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