114,920 research outputs found

    Superradiance in spin-JJ particles: Effects of multiple levels

    Full text link
    We study the superradiance dynamics in a dense system of atoms each of which can be generally a spin-jj particle with jj an arbitrary half-integer. We generalize Dicke's superradiance point of view to multiple-level systems, and compare the results based on a novel approach we have developed in {[}Yelin \textit{et al.}, arXiv:quant-ph/0509184{]}. Using this formalism we derive an effective two-body description that shows cooperative and collective effects for spin-jj particles, taking into account the coherence of transitions between different atomic levels. We find that the superradiance, which is well-known as a many-body phenomenon, can also be modified by multiple level effects. We also discuss the feasibility and propose that our approach can be applied to polar molecules, for their vibrational states have multi-level structure which is partially harmonic.Comment: 11 pages, 7 figure

    Green's function for the Relativistic Coulomb System via Sum Over Perturbation Series

    Full text link
    We evaluate the Green's function of the D-dimensional relativistic Coulomb system via sum over perturbation series which is obtained by expanding the exponential containing the potential term V(x)V({\bf x)} in the path integral into a power series. The energy spectra and wave functions are extracted from the resulting amplitude.Comment: 13 pages, ReVTeX, no figure

    The undetected error probability for shortened hamming codes

    Get PDF
    Hamming or shortened Hamming codes are widely used for error detection in data communications. For example, the CCITT (International Telegraph and Telephone Consultative Committee) recommendation X.25 for packet-switched data networks adopts a distance-4 cyclic Hamming code with 16 parity-check bits for error detection. The natural length of this code is n = 2(15)-1 = 32,767. In practice the length of a data packet is no more than a few thousand bits which is much shorter than the natural length of the code. Consequently, a shortened version of thecode is used. Often the length of a data packet varies, say from a few hundred bits to a few thousand bits, hence the code must be shortened by various degrees. Shortening affects the performance of the code. The error-detection performance of shortened Hamming codes, particularly the codes obtained from the distance-4 Hamming codes adopted by CCITT recommendation X.25, is investigated. A method for computing the probability of an undetected error is presented

    BCH codes for large IC random-access memory systems

    Get PDF
    In this report some shortened BCH codes for possible applications to large IC random-access memory systems are presented. These codes are given by their parity-check matrices. Encoding and decoding of these codes are discussed

    Performance analysis of the word synchronization properties of the outer code in a TDRSS decoder

    Get PDF
    A self-synchronizing coding scheme for NASA's TDRSS satellite system is a concatenation of a (2,1,7) inner convolutional code with a (255,223) Reed-Solomon outer code. Both symbol and word synchronization are achieved without requiring that any additional symbols be transmitted. An important parameter which determines the performance of the word sync procedure is the ratio of the decoding failure probability to the undetected error probability. Ideally, the former should be as small as possible compared to the latter when the error correcting capability of the code is exceeded. A computer simulation of a (255,223) Reed-Solomon code as carried out. Results for decoding failure probability and for undetected error probability are tabulated and compared
    corecore