124 research outputs found

    Formulating Oscillator-Inspired Dynamical Systems to Solve Boolean Satisfiability

    Full text link
    Dynamical systems can offer a novel non-Boolean approach to computing. Specifically, the natural minimization of energy in the system is a valuable property for minimizing the objective functions of combinatorial optimization problems, many of which are still challenging to solve using conventional digital solvers. In this work, we formulate two oscillator-inspired dynamical systems to solve quintessential computationally intractable problems in Boolean satisfiability (SAT). The system dynamics are engineered such that they facilitate solutions to two different flavors of the SAT problem. We formulate the first dynamical system to compute the solution to the 3-SAT problem, while for the second system, we show that its dynamics map to the solution of the Max-NAE-3-SAT problem. Our work advances understanding of how this physics-inspired approach can be used to address challenging problems in computing

    Design and Characterization of a Centrifugal Compressor Surge Test Rig

    Get PDF
    A detailed description of a new centrifugal compressor surge test rig is presented. The objective of the design and development of the rig is to study the surge phenomenon in centrifugal compression systems and to investigate a novel method of surge control by active magnetic bearing servo actuation of the impeller axial tip clearance. In this paper, we focus on the design, initial setup, and testing of the rig. The latter two include the commissioning of the rig and the experimental characterization of the compressor performance. The behavior of the compressor during surge is analyzed by driving the experimental setup into surge. Two fundamental frequencies, 21 Hz and 7 Hz, connected to the surge oscillation in the test rig are identified, and the observed instability is categorized according to the intensity of pressure fluctuations. Based on the test results, the excited pressure waves are clearly the result of surge and not stall. Also, they exhibit the characteristics of mild and classic surge instead of deep surge. Finally, the change in the compressor performance due to variation in the impeller tip clearance is experimentally examined, and the results support the potential of the tip clearance modulation for the control of compressor surge. This is the first such demonstration of the feasibility of surge control of a compressor using active magnetic bearings

    Characterization of DNA Methylation Associated Gene Regulatory Networks During Stomach Cancer Progression

    Get PDF
    DNA methylation plays a critical role in tumorigenesis through regulating oncogene activation and tumor suppressor gene silencing. Although extensively analyzed, the implication of DNA methylation in gene regulatory network is less characterized. To address this issue, in this study we performed an integrative analysis on the alteration of DNA methylation patterns and the dynamics of gene regulatory network topology across distinct stages of stomach cancer. We found the global DNA methylation patterns in different stages are generally conserved, whereas some significantly differentially methylated genes were exclusively observed in the early stage of stomach cancer. Integrative analysis of DNA methylation and network topology alteration yielded several genes which have been reported to be involved in the progression of stomach cancer, such as IGF2, ERBB2, GSTP1, MYH11, TMEM59, and SST. Finally, we demonstrated that inhibition of SST promotes cell proliferation, suggesting that DNA methylation-associated SST suppression possibly contributes to the gastric cancer progression. Taken together, our study suggests the DNA methylation-associated regulatory network analysis could be used for identifying cancer-related genes. This strategy can facilitate the understanding of gene regulatory network in cancer biology and provide a new insight into the study of DNA methylation at system level

    Fabrication of high performance TFN membrane containing NH2-SWCNTs via interfacial regulation

    Get PDF
    A high-flux thin film nanocomposite (TFN) nanofiltration (NF) membrane for low pressure operation (3.5 bar) was fabricated by blending purified amino-functionalized single-walled carbon nanotubes (NH(2)-SWCNTs) with piperazine (PIP) as aqueous phase monomers through interfacial polymerization (IP). The surface properties and structures of the polyamide (PA) active layer were suitably tailored by introducing different amounts of NH(2)-SWCNTs into the PA layer. It was found that the homogeneous incorporation of NH(2)-SWCNTs facilitated a more integral PA layer along with improved roughness, hydrophilicity, and surface charge of the modified membranes, which could be validated by membrane characterisation including SEM, AFM, ATR-FTIR, XPS, zeta potential and water contact angle measurements. Based on cross-flow NF tests, the optimized ultra-thin NH(2)-SWCNT-TFN membranes with 0.002 wt% of NH(2)-SWCNTs exhibited outstanding water permeability of up to 17.8 L m(−2) h(−1) bar(−1), 71.1% higher than that of the pristine membrane, along with high MgSO(4) rejection of 91.0% and Na(2)SO(4) rejection of 96.34%. Meanwhile, NH(2)-SWCNT-TFN membranes also showed excellent long-term stability and antifouling ability. This work demonstrates a facile strategy to fabricate a scalable, low-pressure and ultra-thin TFN membrane with excellent performance
    • …
    corecore