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DNA methylation plays a critical role in tumorigenesis through regulating oncogene
activation and tumor suppressor gene silencing. Although extensively analyzed, the
implication of DNA methylation in gene regulatory network is less characterized. To
address this issue, in this study we performed an integrative analysis on the alteration
of DNA methylation patterns and the dynamics of gene regulatory network topology
across distinct stages of stomach cancer. We found the global DNA methylation patterns
in different stages are generally conserved, whereas some significantly differentially
methylated genes were exclusively observed in the early stage of stomach cancer.
Integrative analysis of DNA methylation and network topology alteration yielded several
genes which have been reported to be involved in the progression of stomach cancer,
such as IGF2, ERBB2, GSTP1, MYH11, TMEM59, and SST. Finally, we demonstrated
that inhibition of SST promotes cell proliferation, suggesting that DNA methylation-
associated SST suppression possibly contributes to the gastric cancer progression.
Taken together, our study suggests the DNA methylation-associated regulatory network
analysis could be used for identifying cancer-related genes. This strategy can facilitate
the understanding of gene regulatory network in cancer biology and provide a new
insight into the study of DNA methylation at system level.

Keywords: DNA methylation, gene regulation network, stomach cancer, tumor stages, system level

INTRODUCTION

DNA methylation plays a critical role in tumorigenesis through regulating oncogene activation
and tumor suppressor gene silencing (He et al., 2008), and has raised extensive attention in the past
decade. It has been shown that tumor initiation and development are associated with aberrant DNA
methylation patterns, as documented in stomach cancer development (Tahara and Arisawa, 2015;
Yamamoto et al., 2016). Aberrant DNA methylation pattern is the hallmark in the cancer genome
(Baylin et al., 2000; Bergman and Cedar, 2013) and is involved in malignant progression (Jones
et al., 2013). Although critically involved in malignancy, the implication of DNA methylation in
tumorigenesis at system level is less characterized.
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The gene regulatory network based analysis is regarded as a
powerful way to understand the mechanism of tumorigenesis
at system level (Kreeger and Lauffenburger, 2010), and various
robust machine learning methods based gene regulatory network
inference algorithms were proposed for such analysis (Haury
et al., 2012; Slawek and Arodz, 2013; Wu et al., 2016). On
the other hand, the rapid development of deep sequencing
technologies promotes the generation of a tremendous amount
of sequencing data, and an increasing number of network-based
methods have been recently applied to understand the molecular
mechanism of tumor formation and progression (Anglani et al.,
2014; Yang et al., 2014; Bicker et al., 2015).

To further investigate the role of DNA methylation in
tumorigenesis at system level, in this study we analyzed the DNA
methylation-associated the topology dynamics of gene regulatory
network in stomach cancer. We observed that although the
DNA methylation patterns are generally conserved, the locus-
specific DNA methylation patterns can be identified, especially in
the early stage. Comparison of the topology of gene regulatory
networks derived from different stages yielded several genes,
such as IGF2, ERBB2, GSTP1, MYH11, TMEM59, and SST, of
which the regulatory relationship is found to be most severely
disrupted. To evaluate the biological relevance, we performed
siRNA assay against SST in gastric epithelial cell line GES-1
and found that down-regulation of SST significantly promotes
gastric cell proliferation. Collectively, these results suggest that
the integrative analysis of DNA methylation and gene regulatory
network across different stages of stomach cancer would be
used to identify genes involved in stomach cancer initiation and
development, and provides a new insight into the understanding
of DNA methylation in carcinogenesis at system level.

RESULTS

Probe-Gene Pairs Assignment
The DNA methylation datasets downloaded from the Cancer
Genome Altas (TCGA) data portal were generated using two
Illumina Infinium DNA methylation bead arrays (HM27 and
HM450). Considering the incompleteness of DNA methylation
data, we focused our study on the probes located in the gene
promoter regions. Technically, more than one probes were
generally designed for a given gene promoter region and it
remains unclear which probe-hit methylated region actually
affect the expression of the target gene. To address this issue, the
distance and correlation criteria were used to assign the proper
probes to a gene (See Materials and Methods for further details).

It has been well recognized that DNA hyper-methylation at
the promoter region is associated with gene suppression (Bell
et al., 2011; Jones, 2012). Due to the unavailability of DNA
methylation data and the matched RNA-seq data in normal
tissues, we examined the correlation between the pair of the
expression level and the DNA methylation level of probes located
in the promoter region of a given gene in each tumor stage.
Not surprisingly, we observed that negatively correlated pairs
outnumber the positive correlated ones (Figure 1A). Particularly,
in the significantly correlated pairs we found that almost all

probe-gene pairs were negatively correlated (Figure 1B). The
probe-gene pair was assigned if the DNA methylation level of the
probe and expression level of a gene are significantly negatively
correlated in one of the four tumor stages. With these criteria,
10,777 probe-gene pairs, which consist of 9,830 probes and 7,546
genes, were defined and then used for the downstream analysis.

Global Conserved and Locus Specific
DNA Methylation Patterns Across
Different Stomach Cancer Stages
With the selected probe-gene pairs, we firstly examined the global
methylation patterns across all stomach cancer stages and the
normal samples. We classified the probes into unmethylated,
hemi-methylated and fully methylated groups using the approach
similar to Lokk et al. (2012). To determine proper thresholds,
we examined the distributions of the methylation level in all
five phenotypes (Figure 2A). We found that the distributions
of the methylation level in all five phenotypes are very similar.
More than half of the probes were unmethylated and only about
15% probes were fully methylated in all samples. The dynamics
in the methylation patterns across the five phenotypes was also
analyzed. We found that the conservation between every two
phenotypes was higher than 80% (Figure 2B), indicating that the
DNA methylation patterns are globally conserved across all the
five phenotypes. Additionally, we found that DNA methylation
patterns are relatively more conserved in tumor stages.

Although the overall patterns are considerably conserved, the
phenotype-specific methylation presumably plays an important
role in initiation and progress of stomach cancer. To test
this presumption, we examined the presence of both the
unmethylated and fully methylated probe-linked genes in the five
phenotypes. Interestingly, we found that both the unmethylated
and fully methylated probe-linked genes in normal samples were
significantly more than those in tumor samples (Figure 3). We
next performed gene ontology (GO) analysis of these genes with
DAVID (Huang et al., 2009a,b). The results showed that the fully
methylated probe-linked genes in normal samples were enriched
in the GO items of defense response to bacterium and innate
immune response (Supplementary Table S1), including LPO
and S100A8 which have been reported to be activated in the
H. pylori-infected gastric mucosa (Semper et al., 2014; Zhuang
et al., 2015).

To further understand the biological relevance of the DNA
methylation in different stages of stomach cancer, we compared
the samples in stages I–IV with the normal samples and identified
the significantly differentially methylated probes. We found
1,059, 716, 673 and 635 genes linked to significantly differentially
methylated genes in stages I–IV samples, respectively. The top
20 significantly differentially methylated probe linked genes
with largest positive and negative mean differences were shown
in Figure 4, in which we found that several oncogenes and
tumor suppressor genes were at the top of the lists (positive
and negative directions, respectively) in all four tumor stages,
including ITGA4, FGF2, FLI1, EGFR, ERBB2, VIM, and DAPK1.
ITGA4 encodes a member of the integrin alpha chain family that
may play a role in cell motility and migration, and the promoter
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FIGURE 1 | Distribution of correlations between the probe methylation level and the expression of target genes. (A): Distribution of spearman correlation of all
potential probe-gene pairs in the four stomach cancer stages. (B): Distribution of spearman correlation of all significantly correlated potential probe-gene pairs in the
four stomach cancer stages.

FIGURE 2 | Global view of methylation patterns in all the five types. (A): The distribution of methylation level across all the five phenotypes, where the two red lines
represent the thresholds used for dividing the probes into three groups. (B): The conservation between every two phenotypes.

of ITGA4was reported to be hyper-methylated in various cancers,
such as colorectal cancer (Gerecke et al., 2015), breast cancer
(Lian et al., 2012) and gastric cancer (Kim et al., 2009). DAPK1, a
positive mediator of gamma-interferon induced programmed cell
death, was reported to be fully hypo-methylated or up-regulated
in several types of cancer, including fistula associated mucinous
type anal adenocarcinoma (Sen et al., 2010), nasopharyngeal
carcinoma (Luo et al., 2011) and gastric cancer (Zhang et al.,
2006).

The Venn diagram of genes with significantly differentially
methylation was shown in Figure 5. We found that most
genes were shared by stages II – IV except in stage I. The

GO analysis (Supplementary Table S2) shows that the
commonly hyper-methylated probe linked genes are mainly
involved in carcinogenesis related biological processes, such
as cell motion, cell death and cell migration. While the
commonly hypo-methylated probe linked genes are mainly
involved in development and differentiation biological
processes (Supplementary Table S3). We also found some
genes exclusively present in stage I, suggesting that they
are presumably associated with the early stage of stomach
cancer. The GO analysis results revealed that both the
specifically hyper-methylated genes and the specifically
hypo-methylated genes are involved in cell adhesion and
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FIGURE 3 | Venn diagrams of genes linked to the fully and unmethylated probes. (A): The Venn diagram of fully methylated probe linked genes with respect to the
five phenotypes. (B): The Venn diagram of unmethylated probe linked genes with respect to the five phenotypes.

FIGURE 4 | Differential methylation analysis between four tumor stages and the normal phenotype (A): Stage I vs. Normal; (B): Stage II vs. Normal; (C): Stage III vs.
Normal; (D): Stage IV vs. Normal. Left: Mean difference between the methylation level in the tumor samples and the normal samples. Right: Distributions of
methylation level, with black vertical lines showing medians. Top 20 of the largest positive and negative mean differences with an adjusted p-value less than 0.05 are
shown.

FIGURE 5 | Venn diagram of genes linked to the differentially methylated probes in stage I to IV compared to the normal phenotype. (A): The Venn diagram of genes
linked to the hyper-methylated probes. (B): The Venn diagram of genes linked to the hypo-methylated probes.
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FIGURE 6 | In-degree of each target gene in each network pair. The red dots represent the retained genes that satisfy the assumption that hyper-methylation may
cause loss of regulation and hypo-methylation may cause its gain. The blue dots represent genes discarded in the further analysis.

transmembrane transport. The difference is that the genes linked
to the specifically hyper-methylated probes are particularly
involved in eating behavior and positive regulation of
appetite (Supplementary Table S4), while the genes linked
to the specifically hypo-methylated probes are particularly
involved in immune response, response to bacterium and
negative regulation of Wnt signaling pathway (Supplementary
Table S5).

Regulation Gain or Loss Induced by DNA
Methylation Alteration
DNA methylation is one of the key epigenetic mechanisms
involved in regulation of gene expression. To further understand
the role of DNA methylation alteration during the stomach
cancer development, we constructed a DNA methylation
associated gene regulatory network for each phenotype and
analyzed the topology differences among these networks.

To examine the regulation alteration affected by the DNA
methylation changes, we screened the target genes based
on the assumption that the hyper-methylation leads to the
reduction of affinity between the TFs and the binding regions
and then may cause the loss of regulation while the hypo-
methylation causes its gain (Yao et al., 2016). We calculated
in-degree for each target gene and the genes with in-
degree increase linked to hypo-methylated probes (in-degree
decrease genes linked to hyper-methylated probes) were retained.
The in-degree of each target gene in each network pair

were shown in Figure 6. After filtering, 57%, 52%, 59%,
and 54% of target genes were retained in stages I–IV,
respectively.

To further investigate the regulation alteration in four tumor
stages compared to the normal phenotype, we constructed
the differential regulatory networks by subtracting the normal
weight matrix from the tumor weight matrixes. The regulation
relationship with the absolute weight difference ranking top
1,000 was regarded as true alterations. Finally, for each
tumor stage we obtained a differential regulatory network
consisting of 1,000 edges that point to 172, 172, 189, and
176 target genes in the four tumor stages. The numbers of
edges pertaining to gain or loss of regulation were listed
in Table 1, in which we observed that the gain number
is larger than the loss number in each of the four tumor
networks.

For the differential regulatory network in stages I–IV, we
ranked the target genes according to the number of gained or
lost regulation, respectively. We found several genes were at the
top in all the tumor stages. The top 10 target genes (listed in

TABLE 1 | Numbers of gain and loss of regulation in each of the four tumor related
networks.

Stage I Stage II Stage III Stage IV

Loss 308 408 464 419

Gain 692 592 536 581
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Supplementary Table S6) with the largest number of regulation
alteration were shown in Figure 7. In these subgraphs we found
that IGF2, ERBB2, and GSTP1 rank top in the largest number of
regulation gained in all the four differential regulatory networks,
and MYH11, SST, and TMEM59 rank top in the largest number
of regulation lost in all the four differential regulatory networks.
IGF2 is an imprinting gene and plays an essential role in the
embryonic development. However, activation of IGF2 stimulates
the proliferation of tumor cells and prevents damaged cells from
being destroyed. It was reported that overexpression of IGF2
plays an important role in carcinogenesis of diffuse type gastric
cancer (Wu et al., 1997). MYH11 belongs to a group of proteins
called myosins, which are involved in cell movement and the
transport of material within and between cells. It was reported
that MYH11 is not expressed in gastric cancer cell lines (Saeki
et al., 2015) and down-regulated MYH11 correlates with poor
prognosis in stage II and stage III colorectal cancer (Wang
et al., 2014). These results indicate that the methylation-mediated
network analysis facilitates the identification of the key genes
involved in tumorigenesis.

To evaluate the authenticity of the genes identified through
our network analysis, we performed a siRNA assay against SST
in gastric epithelial cell line GES-1. Comparing with the control,
we found that SST suppression results in an increase of cells
in S and G2/M phases and the decrease of cells in the G0/G1
phase (Figure 8), indicating that SST down-regulation promotes
cell proliferation. From the results, we found that inhibition
of SST promotes cell proliferation, which suggests that DNA
methylation-associated SST suppression possibly contributes to
the gastric cancer progression.

DISCUSSION

It has been recognized that aberrant DNA methylation play an
import role in tumorigenesis. However, the implication of DNA
methylation in gene regulatory network is less characterized.
Thus, we performed an integrative analysis of DNA methylation
and gene regulatory network with the RNA-seq and DNA
methylation data to understand the role of DNA methylation
change in the gene regulatory network alteration across different
stomach cancer stages.

We first assigned a gene with appropriate probes according
to both the location information and correlation relationship.
We found that the DNA methylation pattern was global
conserved across all phenotypes except some locus specific
DNA methylation patterns in the normal phenotype. The
differential methylation analysis was also performed to identify
the significantly differentially methylated genes in each tumor
stage samples. Interestingly, we found more specific alterations
in the stage I phenotype compared to the other tumor stages and
the GO analysis results showed that these genes are particularly
involved in the biological processes closely related to the cancer
initiation.

To identify the gene regulation alteration affected by the
DNA methylation change, we constructed a DNA methylation
associated gene regulatory network in each phenotype and
subtracted the normal network from the four tumor networks,
respectively. The differential network analysis results showed
that the number of regulations gained was larger than that of
regulations lost in each of the four tumor networks. We ranked
the target genes according to the number of altered regulations

FIGURE 7 | Subgraphs involving the top 10 target genes with the largest number of regulations gained or lost stages I–IV. The red edges represent the regulations
gained in the tumor phenotype and the green edges represent regulations lost in the tumor phenotype. The larger gray nodes are target genes and the smaller gray
dots are transcription factors involved. The top 4 subgraphs are regulation relationships involving the top 10 target genes with the largest number of regulations
gained; the bottom 4 subgraphs are regulation relationships involving the top 10 target genes with the largest number of regulations lost.
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FIGURE 8 | Flow cytometry analysis of the SST knockdown gastric cells. (A): Cell cycle analysis of control siRNA GES-1. (B): Cell cycle analysis of SST knockdown
siRNA GES-1.

and obtained several genes that rank top in all the tumor
stages. For example, IFG2, ERBB2, and GSTP1 ranked top in
the largest number of regulation gain and MYH11, TMEM59,
and SST ranked top with the largest number of regulations loss.
To examine the biological relevance of the genes identified, we
selected SST for functional evaluation. We found that inhibition
of SST can significantly promote cell proliferation, which suggests
that down-regulation of SST is involved in stomach cancer
progression.

In brief, our study demonstrated that integrative analysis of
the regulatory network and DNA methylation allows identifying
cancer-related gene. The strategy proposed here provides new
insight into understanding of the role of DNA methylation in
disease at system level.

MATERIALS AND METHODS

Data Collection and Differentially
Methylated Sites Identification
The DNA methylation data, gene expression data and clinical
data were downloaded from TCGA data portal. The DNA
methylation data consist of 302 samples, which were generated
using two Illumina Infinium DNA methylation bead arrays,
HumanMethylation27 (HM7) and HumanMethylation450
(HM450). The HM27 array contains 27,578 probes that target
CpG sites located in proximity to the transcription start sites
and the HM450 array contains 482,421 probes that target CpG
sites throughout the genome. For ease of description, in the
following sections of this article we used probes to represent the
corresponding CpG sites.

As neither the HM27 nor the HM45 data contains enough
samples for analysis for each phenotype, we only took probes
located in gene promoters into account even though the DNA
methylation of transcriptional enhancers was also reported to
be closely associated with carcinogenesis (Aran and Hellman,
2013). We adopted the strategy mentioned in a previous report
(Bass et al., 2014) to preprocess the DNA methylation. Briefly,

the probes shared by both the HM27 and HM450 platforms were
selected, and the probes that overlap with SNPs, repeat and have
any “NA”-masked data points were removed. The probes that hit
X and Y chromosomes were also removed. After that we obtained
19,736 probes for further analysis. The gene expression data of
272 samples and 26,540 genes were generated using RNA-seq.
The DNA methylation samples and the gene expression samples
were further divided into five phenotypes, which are normal and
tumor stages I–IV, according to the clinical data. Sample numbers
for all phenotype are listed in Table 2.

As we did not expect all cases to be from a single
molecular subtype, and we sought to identify methylation
changes within cases from the same molecular subtype. To
identify the significantly differentially methylated probes, we
excluded the 10% of samples with the lowest methylation and
10% samples with the highest methylation for each probe and the
Wilcoxon Rank Sum test was used to measure the significance.
Probes with a BH-adjusted p-value less than 0.05 and an
absolute methylation difference greater than 0.2 were regarded as
significantly differentially methylated.

Assigning DNA Methylation Sites to the
Target Gene
In general more than one DNA methylation probes of the DNA
array were designed for a given gene promoter region. Thus, it
remains unclear which probes actually affect the expression of
the target gene. To address this issue, we used two criteria to

TABLE 2 | Number of samples in each phenotype for the RNA-seq and DNA
methylation data.

Normal Stage I Stage II Stage III Stage IV

RNA-seq 29 35 93 92 23

DNA methylation 27 37 102 111 25

Matched 0 35 93 92 23
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assign the DNA methylation probes for each gene. We initially
assigned a probe to a gene if the probe located in the promoter
region of the gene. The promoter region of a gene is defined
as ±2 kb region around the transcription start site of the gene.
The relationship between a probe and a gene is then confirmed
with the aid of gene expression based on the evidence that DNA
methylation can repress the transcription when it occurs in the
promoter region. The samples with matched gene expression
data and methylation data were used for the analysis. For each
candidate, we tested the significance of the correlation between
the DNA methylation level of the probe and expression level of
the gene. The Spearman’s coefficient was used as the measure of
correlation. The correlation significance was obtained with t-test
and the t statistic was calculated as:

t =
r
√
n− 2

1− r2 ,

where r is the correlation between the methylation and gene
expression and n is the number of samples. The probe-gene pairs
were finally confirmed if the BH-adjusted p-value is less than 0.05
and the correlation less than zero.

DNA Methylation Associated Gene
Regulatory Network Construction
To construct the DNA methylation associated gene regulatory
network, the potential TFs which maybe bind to the DNA
methylated regions should be identified. We first obtained
JASPAR-2014 motif position weight matrices (PWMs) and
ENCODE motif PWMs from the R package motifDb and 2,182
motif PWMs were used for further analysis (ENCODE Project
Consortium, 2004; Mathelier et al., 2014). The potential TFs
bound to each target gene were predicted according to sequence
affinity. We used FIMO (Grant et al., 2011) to scan a ±100 bps
sequence around each probe in search for instances of the selected
PWMs. A TF was regarded a potential regulator of a probe-linked
genes if the p-value of its motif is less than 1E-4. However, a high
sequence affinity just indicated that the TF has a high opportunity
to bind to the regulatory region. It was unclear whether the gene
relate to the regulatory element is actually bound by the TF.

To measure the confidence of such regulation relationship, we
assigned a weight to the edge outgoing from a potential TF to
the target gene using our previously proposed gene regulatory
network inference method (Wu et al., 2016) with the RNA-seq
data. Briefly, we assumed that the expression level of target gene
can be formulated by an unknown function of the expression of
TFs. We first solved the individual regression problem with the
guided regularized random forest algorithm, and then a q-norm
normalization was employed to reduce the bias among different
regression results and the final results were obtained through

refining the previous results according to the sparsity property
of large scale gene regulatory networks.

RNA Interference and Cell Cycle Analysis
RNA interference assays were performed as reported previously.
SiRNAs for SST, or negative control, were synthesized by
Shanghai GenePharma Co., Ltd. Cells were transfected with
SST siRNA or control siRNA using LipofectamintTM 2000
Transfection Reagent (11668027, Invitrogen) according to the
manufacturer’s protocol. To measure the efficacy of the gene
knockdown, the quantitative real-time reverse transcription
polymerase chain reaction (RT-qPCR) was used. Total RNA
was extracted using TRIzol Reagent (15596-018, Invitrogen)
and resuspended in RNase free water. Reverse transcription
of 1 µg RNA was performed using the oligo-dT primer and
SuperScrip R©III Reverse Transcriptase (18080-044, Invitrogen)
according to the manufacturer’s protocol. Expression levels were
determined by real-time PCR using ABI step one plus (Applied
Biosystems, United States). β-actin was used as a control gene
for normalization. The relative level of mRNA was calculated
as 2−11Ct (means ± SEM, n = 3). The SST-targeting siRNA,
primer sequences and the RT-qPCR results were provided in
Supplementary Table S7.
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