92 research outputs found

    Analysis of Power-aware Buffering Schemes in Wireless Sensor Networks

    Full text link
    We study the power-aware buffering problem in battery-powered sensor networks, focusing on the fixed-size and fixed-interval buffering schemes. The main motivation is to address the yet poorly understood size variation-induced effect on power-aware buffering schemes. Our theoretical analysis elucidates the fundamental differences between the fixed-size and fixed-interval buffering schemes in the presence of data size variation. It shows that data size variation has detrimental effects on the power expenditure of the fixed-size buffering in general, and reveals that the size variation induced effects can be either mitigated by a positive skewness or promoted by a negative skewness in size distribution. By contrast, the fixed-interval buffering scheme has an obvious advantage of being eminently immune to the data-size variation. Hence the fixed-interval buffering scheme is a risk-averse strategy for its robustness in a variety of operational environments. In addition, based on the fixed-interval buffering scheme, we establish the power consumption relationship between child nodes and parent node in a static data collection tree, and give an in-depth analysis of the impact of child bandwidth distribution on parent's power consumption. This study is of practical significance: it sheds new light on the relationship among power consumption of buffering schemes, power parameters of radio module and memory bank, data arrival rate and data size variation, thereby providing well-informed guidance in determining an optimal buffer size (interval) to maximize the operational lifespan of sensor networks

    Traffic sign detection using a cascade method with fast feature extraction and saliency test

    Get PDF
    Automatic traffic sign detection is challenging due to the complexity of scene images, and fast detection is required in real applications such as driver assistance systems. In this paper, we propose a fast traffic sign detection method based on a cascade method with saliency test and neighboring scale awareness. In the cascade method, feature maps of several channels are extracted efficiently using approximation techniques. Sliding windows are pruned hierarchically using coarse-to-fine classifiers and the correlation between neighboring scales. The cascade system has only one free parameter, while the multiple thresholds are selected by a data-driven approach. To further increase speed, we also use a novel saliency test based on mid-level features to pre-prune background windows. Experiments on two public traffic sign data sets show that the proposed method achieves competing performance and runs 27 times as fast as most of the state-of-the-art methods

    Fabrication and In-Situ Cross-linking of Carboxylic Acid-Functionalized Poly(ester amide) Scaffolds for Tissue Engineering

    Get PDF
    Three-dimensional (3D) scaffolds are important tools for tissue engineering, and should ideally provide both biochemical cues and biomechanical support for cells. Poly(ester amide)s (PEAs) have emerged as promising materials for the preparation of tissue engineering scaffolds and the pendant side chains of residues such as ʟ-lysine and ʟ-aspartic acid can provide sites for the conjugation of biochemical signals. However, it has been challenging to combine scaffold morphological stability with the presentation of reactive groups on PEA scaffolds. We describe here a new approach involving the functionalization of a ʟ-lysine-containing PEA with maleic anhydride to simultaneously introduce cross-linkable alkenes and carboxylic acid conjugation sites. Maleic-acid-functionalized PEA was processed to form 3D scaffolds using a salt leaching method and the scaffolds were cross-linked in situ using a poly(ethylene glycol) dimethacrylate cross-linking agent by thermal free radical curing. Micro-computed tomography analysis indicated that the cross-linked scaffolds had higher polymer volume fraction, lower porosity, and smaller pore size than the non-cross-linked scaffolds, but both scaffolds exhibited high morphological stability and negligible mass loss upon incubation in phosphate buffered saline for 5 days. The Young’s moduli of the cross-linked and non-cross-linked scaffolds were 28 and 9 kPa respectively. Fluorescein-labeled bovine serum albumin was successfully conjugated to the scaffolds using a carbodiimide-based coupling. Finally, it was shown that the scaffolds supported the attachment and proliferation of mouse embryonic mesenchymal multipotent cells, showing their promise as platforms for tissue engineering applications

    ReLLa: Retrieval-enhanced Large Language Models for Lifelong Sequential Behavior Comprehension in Recommendation

    Full text link
    With large language models (LLMs) achieving remarkable breakthroughs in natural language processing (NLP) domains, LLM-enhanced recommender systems have received much attention and have been actively explored currently. In this paper, we focus on adapting and empowering a pure large language model for zero-shot and few-shot recommendation tasks. First and foremost, we identify and formulate the lifelong sequential behavior incomprehension problem for LLMs in recommendation domains, i.e., LLMs fail to extract useful information from a textual context of long user behavior sequence, even if the length of context is far from reaching the context limitation of LLMs. To address such an issue and improve the recommendation performance of LLMs, we propose a novel framework, namely Retrieval-enhanced Large Language models (ReLLa) for recommendation tasks in both zero-shot and few-shot settings. For zero-shot recommendation, we perform semantic user behavior retrieval (SUBR) to improve the data quality of testing samples, which greatly reduces the difficulty for LLMs to extract the essential knowledge from user behavior sequences. As for few-shot recommendation, we further design retrieval-enhanced instruction tuning (ReiT) by adopting SUBR as a data augmentation technique for training samples. Specifically, we develop a mixed training dataset consisting of both the original data samples and their retrieval-enhanced counterparts. We conduct extensive experiments on a real-world public dataset (i.e., MovieLens-1M) to demonstrate the superiority of ReLLa compared with existing baseline models, as well as its capability for lifelong sequential behavior comprehension.Comment: Under Revie

    Efficacy and safety of a combination of miglitol, metformin and insulin aspart in the treatment of type 2 diabetes

    Get PDF
    Purpose: To study the clinical effect of combining insulin aspart with different drugs in the treatment oftype 2 diabetes mellitus (T2DM).Methods: Two hundred and thirty-seven T2DM patients admitted to the Endocrinology Department of the Second Affiliated Hospital of Kunming Medical University from March to September 2018 were selected as subjects in this study. Miglitol and metformin were used in combination with insulin aspart in the treatment of T2DM. In addition, data on the effectiveness and safety of different treatment options,such as patient’s weight, waist circumference, blood glucose indicators, indices of heart, liver and kidney functions, and incidence of complications were recorded and compared between the two groups.Results: The use of a combination of miglitol and insulin aspart produced an excellent hypoglycaemic effect, and it significantly reduced the incidence of sensory neuropathy in the eyes and distal limbs (p < 0.05). The use of combination of metformin and insulin aspart effectively protected the heart and kidney, and prevented hypoglycaemia (p < 0.05).Conclusion: These results suggest that treatment with a combination of miglitol and insulin aspart is suitable for patients with T2DM whose blood sugar levels are out of control, while combined treatment with metformin and insulin aspart is more suited for patients who desire to reduce blood sugar and blood lipids through weight loss, and patients with cardiac and renal insufficiency

    Enhanced corrosion protection by Al surface immobilization of in-situ grown layered double hydroxide films co-intercalated with inhibitors and low surface energy species

    Get PDF
    Abstract(#br)In this work, a novel in-situ grown layered double hydroxide (LDH) film co-intercalated with inhibitors (vanadates) and low surface energy substance (laurates) was immobilized on Al substrates. A long-term monitoring of electrochemical impedance spectra (EIS) of the various samples in 3.5 wt.% NaCl solution demonstrated the synergetic protection of the intercalated two functional species. Meanwhile, the X-ray diffraction (XRD) result of the samples after immersion in NaCl solution for a long time presented the anion-exchange process between vanadates/laurates and chlorides. The synergetic effect of the two species loaded film significantly contributed to the enhanced long-term corrosion protection of aluminum

    Structure-chiroptical property relationship of kinetically labile camphor-derivative beta-diketone Yb(III) complexes: do the adducts coexist as diastereomers or not?

    Get PDF
    The present work examines the relationship between the crystal structures and chiroptical properties of four chiral Yb(III) complexes with camphor-derivative beta-diketone ligands by means of solid-state circular dichroism (CD) spectroscopy. For the seven-coordinate complexes, [Yb(H(2)O)(d-hfc)(3)] (I) and [Yb(H(2)O)(l-hfc)(3)] (II) (d/l-hfc(-) = 3-heptafluorobutyryl-(+)/(-)-camphorate), the Lambda- and Delta-diastereomers coexist in their crystals and no apparent bisignate couplets are observed in their solid-state CD spectra. A theoretical study indicates that the ground-state energy difference between the two diastereomers I and II is only 0.913 kcal mol(-1), which explains why they could coexist in a crystal environment with the ratio of 1:1. While, eight-coordinate complexes Delta-[Yb(TPPO)(2)(d-hfc)(3)]center dot CHCl(3)center dot 3C(6)H(12) (III) and Lambda-[Yb(TPPO)(2)(l-hfc)(3)]center dot CHCl3 center dot 3C(6)H(12) (IV) (TPPO = triphenylphosphine oxide) are enantiopure in the solid-state, and typically negative and positive exciton splitting patterns around 330 nm are observed in their solid-state CD spectra. The solid-state CD spectra of these four complexes are in accordance with their X-ray single-crystal analyses. Besides, their solution CD spectra show that no particular isomer predominates in solution.NSFC[20973136, 20773098, 20673069]; NSF of Shanxi province[2007011021

    Electrospun Biodegradable α-Amino Acid-Substituted Poly(organophosphazene) Fiber Mats for Stem Cell Differentiation towards Vascular Smooth Muscle Cells

    No full text
    Mesenchymal stem cells, derived from human-induced pluripotent stem cells (iPSC), are valuable for generating smooth muscle cells (SMCs) for vascular tissue engineering applications. In this study, we synthesized biodegradable α-amino acid-substituted poly(organophosphazene) polymers and electrospun nano-fibrous scaffolds (~200 nm diameter) to evaluate their suitability as a matrix for differentiation of iPSC-derived mesenchymal stem cells (iMSC) into mature contractile SMCs. Both the polymer synthesis approach and the electrospinning parameters were optimized. Three types of cells, namely iMSC, bone marrow derived mesenchymal stem cells (BM-MSC), and primary human coronary artery SMC, attached and spread on the materials. Although L-ascorbic acid (AA) and transforming growth factor-beta 1 (TGF-β1) were able to differentiate iMSC along the smooth muscle lineage, we showed that the electrospun fibrous mats provided material cues for the enhanced differentiation of iMSCs. Differentiation of iMSC to SMC was characterized by increased transcriptional levels of early to late-stage smooth muscle marker proteins on electrospun fibrous mats. Our findings provide a feasible strategy for engineering functional vascular tissues

    Immobilization of Jagged1 Enhances Vascular Smooth Muscle Cells Maturation by Activating the Notch Pathway

    No full text
    In Notch signaling, the Jagged1-Notch3 ligand-receptor pairing is implicated for regulating the phenotype maturity of vascular smooth muscle cells. However, less is known about the role of Jagged1 presentation strategy in this regulation. In this study, we used bead-immobilized Jagged1 to direct phenotype control of primary human coronary artery smooth muscle cells (HCASMC), and to differentiate embryonic multipotent mesenchymal progenitor (10T1/2) cell towards a vascular lineage. This Jagged1 presentation strategy was sufficient to activate the Notch transcription factor HES1 and induce early-stage contractile markers, including smooth muscle α-actin and calponin in HCASMCs. Bead-bound Jagged1 was unable to regulate the late-stage markers myosin heavy chain and smoothelin; however, serum starvation and TGFβ1 were used to achieve a fully contractile smooth muscle cell. When progenitor 10T1/2 cells were used for Notch3 signaling, pre-differentiation with TGFβ1 was required for a robust Jagged1 specific response, suggesting a SMC lineage commitment was necessary to direct SMC differentiation and maturity. The presence of a magnetic tension force to the ligand-receptor complex was evaluated for signaling efficacy. Magnetic pulling forces downregulated HES1 and smooth muscle α-actin in both HCASMCs and progenitor 10T1/2 cells. Taken together, this study demonstrated that (i) bead-bound Jagged1 was sufficient to activate Notch3 and promote SMC differentiation/maturation and (ii) magnetic pulling forces did not activate Notch3, suggesting the bead alone was able to provide necessary clustering or traction forces for Notch activation. Notch is highly context-dependent; therefore, these findings provide insights to improve biomaterial-driven Jagged1 control of SMC behavior
    • …
    corecore