27 research outputs found

    γ-Secretase Functions through Notch Signaling to Maintain Skin Appendages but Is Not Required for Their Patterning or Initial Morphogenesis

    Get PDF
    AbstractThe role of Notch signaling during skin development was analyzed using Msx2-Cre to create mosaic loss-of-function alleles with precise temporal and spatial resolution. We find that γ-secretase is not involved in skin patterning or cell fate acquisition within the hair follicle. In its absence, however, inner root sheath cells fail to maintain their fates and by the end of the first growth phase, the epidermal differentiation program is activated in outer root sheath cells. This results in complete conversion of hair follicles to epidermal cysts that bears a striking resemblance to Nevus Comedonicus. Sebaceous glands also fail to form in γ-secretase-deficient mice. Importantly, mice with compound loss of Notch genes in their skin phenocopy loss of γ-secretase in all three lineages, demonstrating that Notch proteolysis accounts for the major signaling function of this enzyme in this organ and that both autonomous and nonautonomous Notch-dependent signals are involved

    Fatty acid transport protein 4 is required for incorporation of saturated ultralong-chain fatty acids into epidermal ceramides and monoacylglycerols

    Get PDF
    Fatty acid transport protein 4 (FATP4) is an acyl-CoA synthetase that is required for normal permeability barrier in mammalian skin. FATP4 (SLC27A4) mutations cause ichthyosis prematurity syndrome, a nonlethal disorder. In contrast, Fatp4-/- mice die neonatally from a defective barrier. Here we used electron microscopy and lipidomics to characterize defects in Fatp4-/- mice. Mutants showed lamellar body, corneocyte lipid envelope, and cornified envelope abnormalities. Lipidomics identified two lipids previously speculated to be present in mouse epidermis, sphingosine β-hydroxyceramide and monoacylglycerol; mutants displayed decreased proportions of these and the two ceramide classes that carry ultralong-chain, amide-linked fatty acids (FAs) thought to be critical for barrier function, unbound ω-O-acylceramide and bound ω-hydroxyceramide, the latter constituting the major component of the corneocyte lipid envelope. Other abnormalities included elevated amounts of sphingosine α-hydroxyceramide, phytosphingosine non-hydroxyceramide, and 1-O-acylceramide. Acyl chain length alterations in ceramides also suggested roles for FATP4 in esterifying saturated non-hydroxy and β-hydroxy FAs with at least 25 carbons and saturated or unsaturated ω-hydroxy FAs with at least 30 carbons to CoA. Our lipidomic analysis is the most thorough such study of the Fatp4-/- mouse skin barrier to date, providing information about how FATP4 can contribute to barrier function by regulating fatty acyl moieties in various barrier lipids

    Genetic Mosaic Analysis Indicates That the Bulb Region of Coat Hair Follicles Contains a Resident Population of Several Active Multipotent Epithelial Lineage Progenitors

    Get PDF
    AbstractThe hair follicle represents an excellent model system for exploring the properties of lineage-forming units in a dynamic epithelium containing multiple cell types. During its growth (anagen) phase, the proximal–distal axis of the mouse coat hair (pelage) follicle provides a historical record of all epithelial lineages generated from its resident stem cell population. An unresolved question in the field is whether the bulb region of anagen pelage follicles contains multipotential progenitors and whether their individual contribution to cellular census fluctuates over time. To address this issue, chimeric follicles were harvested in midanagen from three types of genetic mosaic mouse models. Analysis of the distribution of genotypic markers, including digital three-dimensional reconstruction of serially sectioned chimeric follicles, revealed that on average the bulb contains four or fewer active progenitors, each capable of giving rise to all six follicular epithelial fates. Moreover, analysis of mosaic pelage, as well as cultured whisker follicles provided evidence that bulb-associated progenitors can give rise to expanding descendant clones during midanagen, leading to the conclusion that the bulb contains dormant or symmetrically dividing stem cells. This latter feature resembles the behavior of hematopoietic stem cells after bone marrow transplantation, and raises the question of whether this property may be shared by stem cells in other self-renewing epithelia

    Notch-Deficient Skin Induces a Lethal Systemic B-Lymphoproliferative Disorder by Secreting TSLP, a Sentinel for Epidermal Integrity

    Get PDF
    Epidermal keratinocytes form a highly organized stratified epithelium and sustain a competent barrier function together with dermal and hematopoietic cells. The Notch signaling pathway is a critical regulator of epidermal integrity. Here, we show that keratinocyte-specific deletion of total Notch signaling triggered a severe systemic B-lymphoproliferative disorder, causing death. RBP-j is the DNA binding partner of Notch, but both RBP-j–dependent and independent Notch signaling were necessary for proper epidermal differentiation and lipid deposition. Loss of both pathways caused a persistent defect in skin differentiation/barrier formation. In response, high levels of thymic stromal lymphopoietin (TSLP) were released into systemic circulation by Notch-deficient keratinocytes that failed to differentiate, starting in utero. Exposure to high TSLP levels during neonatal hematopoiesis resulted in drastic expansion of peripheral pre- and immature B-lymphocytes, causing B-lymphoproliferative disorder associated with major organ infiltration and subsequent death, a previously unappreciated systemic effect of TSLP. These observations demonstrate that local skin perturbations can drive a lethal systemic disease and have important implications for a wide range of humoral and autoimmune diseases with skin manifestations

    Peroxisome Proliferator–Activated Receptor γ Level Contributes to Structural Integrity and Component Production of Elastic Fibers in the AortaNovelty and Significance

    Get PDF
    Loss of integrity and massive disruption of elastic fibers are key features of abdominal aortic aneurysm (AAA). Peroxisome proliferator-activated receptor γ (PPARγ) has been shown to attenuate AAA through inhibition of inflammation and proteolytic degradation. However, its involvement in elastogenesis during AAA remains unclear. PPARγ was highly expressed in human AAA within all vascular cells, including inflammatory cells and fibroblasts. In the aortas of transgenic mice expressing PPARγ at 25% normal levels (PpargC/− mice), we observed the fragmentation of elastic fibers and reduced expression of vital elastic fiber components of elastin and fibulin-5. These were not observed in mice with 50% normal PPARγ expression (Pparg+/− mice). Infusion of a moderate dose of angiotensin II (AngII) (500 ng/kg/min) did not induce AAA but Pparg+/− aorta developed flattened elastic lamellae, while PpargC/− aorta showed severe destruction of elastic fibers. After infusion of AngII at 1000 ng/kg/min, 73% of PpargC/− mice developed atypical suprarenal aortic aneurysms: superior mesenteric arteries were dilated with extensive collagen deposition in adventitia and infiltrations of inflammatory cells. Although matrix metalloproteinase inhibition by doxycycline somewhat attenuated the dilation of aneurysm, it did not reduce the incidence nor elastic lamella deterioration in AngII-infused PpargC/− mice. Furthermore, PPARγ antagonism down-regulated elastin and fibulin-5 in fibroblasts, but not in vascular smooth muscle cells. Chromatin immunoprecipitation assay demonstrated PPARγ binding in the genomic sequence of fibulin-5 in fibroblasts. Our results underscore the importance of PPARγ in AAA development though orchestrating proper elastogenesis and preserving elastic fiber integrity

    Defining the causes of sporadic Parkinson's disease in the global Parkinson's genetics program (GP2)

    Get PDF
    The Global Parkinson’s Genetics Program (GP2) will genotype over 150,000 participants from around the world, and integrate genetic and clinical data for use in large-scale analyses to dramatically expand our understanding of the genetic architecture of PD. This report details the workflow for cohort integration into the complex arm of GP2, and together with our outline of the monogenic hub in a companion paper, provides a generalizable blueprint for establishing large scale collaborative research consortia

    Multi-ancestry genome-wide association meta-analysis of Parkinson?s disease

    Get PDF
    Although over 90 independent risk variants have been identified for Parkinson’s disease using genome-wide association studies, most studies have been performed in just one population at a time. Here we performed a large-scale multi-ancestry meta-analysis of Parkinson’s disease with 49,049 cases, 18,785 proxy cases and 2,458,063 controls including individuals of European, East Asian, Latin American and African ancestry. In a meta-analysis, we identified 78 independent genome-wide significant loci, including 12 potentially novel loci (MTF2, PIK3CA, ADD1, SYBU, IRS2, USP8, PIGL, FASN, MYLK2, USP25, EP300 and PPP6R2) and fine-mapped 6 putative causal variants at 6 known PD loci. By combining our results with publicly available eQTL data, we identified 25 putative risk genes in these novel loci whose expression is associated with PD risk. This work lays the groundwork for future efforts aimed at identifying PD loci in non-European populations
    corecore