5,260 research outputs found

    Adapting Visual Question Answering Models for Enhancing Multimodal Community Q&A Platforms

    Full text link
    Question categorization and expert retrieval methods have been crucial for information organization and accessibility in community question & answering (CQA) platforms. Research in this area, however, has dealt with only the text modality. With the increasing multimodal nature of web content, we focus on extending these methods for CQA questions accompanied by images. Specifically, we leverage the success of representation learning for text and images in the visual question answering (VQA) domain, and adapt the underlying concept and architecture for automated category classification and expert retrieval on image-based questions posted on Yahoo! Chiebukuro, the Japanese counterpart of Yahoo! Answers. To the best of our knowledge, this is the first work to tackle the multimodality challenge in CQA, and to adapt VQA models for tasks on a more ecologically valid source of visual questions. Our analysis of the differences between visual QA and community QA data drives our proposal of novel augmentations of an attention method tailored for CQA, and use of auxiliary tasks for learning better grounding features. Our final model markedly outperforms the text-only and VQA model baselines for both tasks of classification and expert retrieval on real-world multimodal CQA data.Comment: Submitted for review at CIKM 201

    Electrical current distribution across a metal-insulator-metal structure during bistable switching

    Full text link
    Combining scanning electron microscopy (SEM) and electron-beam-induced current (EBIC) imaging with transport measurements, it is shown that the current flowing across a two-terminal oxide-based capacitor-like structure is preferentially confined in areas localized at defects. As the thin-film device switches between two different resistance states, the distribution and intensity of the current paths, appearing as bright spots, change. This implies that switching and memory effects are mainly determined by the conducting properties along such paths. A model based on the storage and release of charge carriers within the insulator seems adequate to explain the observed memory effect.Comment: 8 pages, 7 figures, submitted to J. Appl. Phy

    Optimising Spectroscopic and Photometric Galaxy Surveys: Efficient Target Selection and Survey Strategy

    Full text link
    The next generation of spectroscopic surveys will have a wealth of photometric data available for use in target selection. Selecting the best targets is likely to be one of the most important hurdles in making these spectroscopic campaigns as successful as possible. Our ability to measure dark energy depends strongly on the types of targets that we are able to select with a given photometric data set. We show in this paper that we will be able to successfully select the targets needed for the next generation of spectroscopic surveys. We also investigate the details of this selection, including optimisation of instrument design and survey strategy in order to measure dark energy. We use color-color selection as well as neural networks to select the best possible emission line galaxies and luminous red galaxies for a cosmological survey. Using the Fisher matrix formalism we forecast the efficiency of each target selection scenario. We show how the dark energy figures of merit change in each target selection regime as a function of target type, survey time, survey density and other survey parameters. We outline the optimal target selection scenarios and survey strategy choices which will be available to the next generation of spectroscopic surveys.Comment: 16 pages, 22 figures, accepted to MNRAS in dec 201

    The number of maximum matchings in a tree

    Get PDF
    We determine upper and lower bounds for the number of maximum matchings (i.e., matchings of maximum cardinality) m(T)m(T) of a tree TT of given order. While the trees that attain the lower bound are easily characterised, the trees with largest number of maximum matchings show a very subtle structure. We give a complete characterisation of these trees and derive that the number of maximum matchings in a tree of order nn is at most O(1.391664n)O(1.391664^n) (the precise constant being an algebraic number of degree 14). As a corollary, we improve on a recent result by G\'orska and Skupie\'n on the number of maximal matchings (maximal with respect to set inclusion).Comment: 38 page

    Mechanism and Control of High‐Intensity‐Laser‐Driven Proton Acceleration

    Get PDF
    We discuss the optimization and control of laser‐driven proton beams. Specifically, we report on the dependence of high‐intensity laser accelerated proton beams on the material properties of various thin‐film targets. Evidence of star‐like filaments and beam hollowing (predicted from the electrothermal instability theory) is observed on Radiochromic Film (RCF) and CR‐39 nuclear track detectors. The proton beam spatial profile is found to depend on initial target conductivity and target thickness. For resistive target materials, these structured profiles are explained by the inhibition of current, due to the lack of a return current. The conductors, however, can support large propagating currents due to the substantial cold return current which is composed of free charge carriers in the conduction band to neutralize the plasma from the interaction. The empirical plot shows relationship between the maximum proton energy and the target thickness also supports the return current and target normal sheath acceleration (TNSA) theory. We have also observed filamentary structures in the proton beam like those expected from the Weibel instability in the electron beam. Along with the ion acceleration, a clear electron beam is detected by the RCF along the tangent to the target, which is also the surface direction of target plate. © 2004 American Institute of PhysicsPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87542/2/595_1.pd

    Imaging microvascular dynamics noninvasively with realtime photoacoustic microscopy

    Get PDF
    A realtime photoacoustic microscopy system consisting of a high-repetition rate pulsed laser, high-frequency (30 MHz) ultrasound array transducer, and realtime receiving system was used to visualize microvessels pulsations over a cardiac cycle. The system offers 100 Όm lateral spatial resolution, 25 ”m axial spatial resolution, and can image at a rate of 83 frames per second. The system shows promise for visualizing time-varying processes in the microvasculature

    UHECRs from magnetic reconnection in relativistic jets

    Full text link
    Ultra-high energy cosmic rays (UHECRs) may be produced in active galactic nuclei (AGN) or gamma-ray burst (GRB) jets. I argue that magnetic reconnection in jets can accelerate UHECRs rather independently of physical processes in the magnetic dissipation region. First order Fermi acceleration can efficiently take place in the region where the unreconnected (upstream) magnetized fluid converges into the reconnection layer. I find that protons can reach energies up to E~10^{20} eV in GRB and powerful AGN jets while iron nuclei can reach similar energies in AGN jets of more moderate luminosity.Comment: 5 pages, 2 figures, MNRAS Letters, in press, Sect. 3.3 added to match the published versio

    Magnetic Susceptibility: Solutions, Emulsions, and Cells

    Full text link
    Differences in magnetic susceptibility between various compartments in heterogeneous samples can introduce unanticipated complications to NMR spectra. On the other hand, an understanding of these effects at the level of the underlying physical principles has led to the development of several experimental techniques that provide data on cellular function that are unique to NMR spectroscopy. To illustrate some key features of susceptibility effects we present, among a more general overview, results obtained with red blood cells and a recently described model system involving diethyl phthalate in water. This substance forms a relatively stable emulsion in water and yet it has a significant solubility of 5 mmol/L at room temperature; thus, the NMR spectrum has twice as many resonances as would be expected for a simple solution. What determines the relative intensities of the two families of peaks and can their frequencies be manipulated experimentally in a predictable way? The theory used to interpret the NMR spectra from the model system and cells was first developed in the context of electrostatics nearly a century ago, and yet some of its underlying assumptions now warrant closer scrutiny. While this insight is used in a practical way in this article, the accompanying article deals with the mathematics and physics behind this new analysis.Comment: 15 pages, 9 figures, v2: updated to resemble the published versio

    Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer

    Get PDF
    Visualization of microvascular networks could provide new information about function and disease. We demonstrate the capabilities of a 30-MHz ultrasound array system for photoacoustic microscopy of small (≀300ÎŒm) vessels in a rat. 3D images obtained by translating the array in the elevation direction are compared with photographs of excised skin. The system is shown to have 100-ÎŒm lateral resolution, 25-ÎŒm axial resolution, and 3-mm imaging depth. To our knowledge this is the first report on photoacoustic microscopy of the microvasculature with a high-frequency array transducer. It is anticipated that the system can be used for studying and diagnosing a number of diseases including cancer, atherosclerosis, dermatological disorders, and peripheral microvascular complications in diabetes
    • 

    corecore