635 research outputs found

    Active Sampling of Pairs and Points for Large-scale Linear Bipartite Ranking

    Full text link
    Bipartite ranking is a fundamental ranking problem that learns to order relevant instances ahead of irrelevant ones. The pair-wise approach for bi-partite ranking construct a quadratic number of pairs to solve the problem, which is infeasible for large-scale data sets. The point-wise approach, albeit more efficient, often results in inferior performance. That is, it is difficult to conduct bipartite ranking accurately and efficiently at the same time. In this paper, we develop a novel active sampling scheme within the pair-wise approach to conduct bipartite ranking efficiently. The scheme is inspired from active learning and can reach a competitive ranking performance while focusing only on a small subset of the many pairs during training. Moreover, we propose a general Combined Ranking and Classification (CRC) framework to accurately conduct bipartite ranking. The framework unifies point-wise and pair-wise approaches and is simply based on the idea of treating each instance point as a pseudo-pair. Experiments on 14 real-word large-scale data sets demonstrate that the proposed algorithm of Active Sampling within CRC, when coupled with a linear Support Vector Machine, usually outperforms state-of-the-art point-wise and pair-wise ranking approaches in terms of both accuracy and efficiency.Comment: a shorter version was presented in ACML 201

    Optimal Joint Routing and Scheduling in Millimeter-Wave Cellular Networks

    Full text link
    Millimeter-wave (mmWave) communication is a promising technology to cope with the expected exponential increase in data traffic in 5G networks. mmWave networks typically require a very dense deployment of mmWave base stations (mmBS). To reduce cost and increase flexibility, wireless backhauling is needed to connect the mmBSs. The characteristics of mmWave communication, and specifically its high directional- ity, imply new requirements for efficient routing and scheduling paradigms. We propose an efficient scheduling method, so-called schedule-oriented optimization, based on matching theory that optimizes QoS metrics jointly with routing. It is capable of solving any scheduling problem that can be formulated as a linear program whose variables are link times and QoS metrics. As an example of the schedule-oriented optimization, we show the optimal solution of the maximum throughput fair scheduling (MTFS). Practically, the optimal scheduling can be obtained even for networks with over 200 mmBSs. To further increase the runtime performance, we propose an efficient edge-coloring based approximation algorithm with provable performance bound. It achieves over 80% of the optimal max-min throughput and runs 5 to 100 times faster than the optimal algorithm in practice. Finally, we extend the optimal and approximation algorithms for the cases of multi-RF-chain mmBSs and integrated backhaul and access networks.Comment: To appear in Proceedings of INFOCOM '1

    Determinants and Impacts of the Relative Use of Depository Receipts and Euro Convertible Bonds by High-tech Corporations: An Empirical Study

    Get PDF
    This paper adopts Taiwan's high-tech companies as the sample to address and examine four new determinants of various foreign financing instruments and test their impacts on the issuing firms. Our empirical findings are consistent with the following notions. First, the firms with higher foreign holding and foreign investment will be likely to adopt foreign financing policy. Moreover, the firms with higher stock dividend payment in Taiwan will adopt both of ECB (Euro convertible bond) and DR (depository receipt). Firm managers with better education background will prefer DR. Second, the use of DR can effectively decrease the volatility of stock returns but also pronounce a negative influence on the mean of stock returns. In contrast, the use of ECB can effectively increase the mean but can not significantly decrease the volatility.

    Optimal and Approximation Algorithms for Joint Routing and Scheduling in Millimeter-Wave Cellular Networks

    Full text link
    Millimeter-wave (mmWave) communication is a promising technology to cope with the exponential increase in 5G data traffic. Such networks typically require a very dense deployment of base stations. A subset of those, so-called macro base stations, feature high-bandwidth connection to the core network, while relay base stations are connected wirelessly. To reduce cost and increase flexibility, wireless backhauling is needed to connect both macro to relay as well as relay to relay base stations. The characteristics of mmWave communication mandates new paradigms for routing and scheduling. The paper investigates scheduling algorithms under different interference models. To showcase the scheduling methods, we study the maximum throughput fair scheduling problem. Yet the proposed algorithms can be easily extended to other problems. For a full-duplex network under the no interference model, we propose an efficient polynomial-time scheduling method, the {\em schedule-oriented optimization}. Further, we prove that the problem is NP-hard if we assume pairwise link interference model or half-duplex radios. Fractional weighted coloring based approximation algorithms are proposed for these NP-hard cases. Moreover, the approximation algorithm parallel data stream scheduling is proposed for the case of half-duplex network under the no interference model. It has better approximation ratio than the fractional weighted coloring based algorithms and even attains the optimal solution for the special case of uniform orthogonal backhaul networks.Comment: accepted for publish in the IEEE/ACM Transactions on Networkin

    Conducting large, repeated, multi-game economic experiments using mobile platforms

    Get PDF
    We demonstrate the possibility of conducting synchronous, repeated, multi-game economic decision-making experiments with hundreds of subjects in-person or remotely with live streaming using entirely mobile platforms. Our experiment provides important proof-of-concept that such experiments are not only possible, but yield recognizable results as well as new insights, blurring the line between laboratory and field experiments. Specifically, our findings from 8 different experimental economics games and tasks replicate existing results from traditional laboratory experiments despite the fact that subjects play those games/task in a specific order and regardless of whether the experiment was conducted in person or remotely. We further leverage our large subject population to study the effect of large (N = 100) versus small (N = 10) group sizes on behavior in three of the scalable games that we study. While our results are largely consistent with existing findings for small groups, increases in group size are shown to matter for the robustness of those findings

    A Distinct Difference between Air and Mucosal Temperatures in Human Respiratory Tract

    Get PDF
    xtensive evidence indicates that several types of temperature-sensitive ion channels are abundantly expressed in the sensory nerves innervating airway mucosa. Indeed, airway temperature is known to play an important role in regulating respiratory functions. However, the actual airway mucosal temperature and its dynamic changes during the respiratory cycle have not been directly measured. In previous studies, airway tissue temperature was often estimated by indirect measurement of the peak exhaled breath temperature (PEBT). In view of the poor thermal conductivity of air, we believe that the airway tissue temperature cannot be accurately determined by the exhaled air temperature, and this study aimed to test this hypothesis. We applied a miniature rapid-response temperature probe to measure directly the mucosal temperatures of trachea, major, lobar, and segmental bronchi in eight human subjects during a bronchoscopy procedure. Unlike the air temperature in the airway lumen, the mucosal temperature in these airway segments remained relatively stable and did not exhibit the phasic changes synchronous with respiratory cycles. The airway mucosal temperature increased progressively from the extra-thoracic trachea (35.7 ± 0.2°C) toward the segmental bronchus (36.9 ± 0.2°C). Most importantly, the temperatures measured directly at the mucosa of all these airway segments were substantially higher than the PEBT (31.7 ± 0.8°C). The recent findings of a close association between an increased PEBT and airway tissue inflammation have revealed the implication and potential of incorporating the PEBT measurement in the future clinical diagnosis of airway inflammation. Therefore, it is imperative to recognize this distinct difference in temperature between airway mucosa and exhaled air

    Chinese adaptation of the Ten-Item Internet Gaming Disorder Test and prevalence estimate of Internet gaming disorder among adolescents in Taiwan

    Get PDF
    Background and aims Internet gaming disorder (IGD) is an increasingly important topic and has been included in the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) research criteria. This study aims to validate the Chinese version of the Ten-Item Internet Gaming Disorder Test (IGDT-10), a self-reported questionnaire based on DSM-5 IGD criteria, and to estimate the prevalence of IGD in adolescents. Methods The IGDT-10 was translated to Chinese as a 10-item questionnaire rated on a 3-point Likert scale to evaluate the symptoms of IGD. Overall, 8,110 students from grade four to senior high who played Internet games were administered the questionnaire. In addition, 76 senior high-school students were interviewed using DSM-5 criteria to determine the optimal cut-off point that ensures adequate sensitivity, specificity, and diagnostic accuracy. The cut-off point was determined using the Youden’s index and optimal diagnostic accuracy. Results The Chinese version of the IGDT-10 showed good internal consistency (Cronbach’s α = .85) and adequate diagnostic efficiency (area under the curve = 0.810). Through interviews, the optimal cut-off point was determined to be five out of the nine criteria (Youden’s index: 42.1%, diagnostic accuracy: 86.8%, sensitivity: 43.8%, and specificity: 98.3%). In this study, the prevalence of IGD among adolescent gamers was 3.1%. Conclusion Findings evidence the validity and diagnostic accuracy of the IGDT-10 in the assessment of IGD
    • …
    corecore