100,484 research outputs found
Diquarks, Pentaquarks and Dibaryons
We explore the connection between pentaquarks and dibaryons composed of three
diquarks in the framework of the diquark model. With the available experimental
data on H dibaryon, we estimate the Pauli blocking and annihilation effects and
constrain the pentaquark singlet mass. Using the
pentaquark mass, we estimate dibaryon mass
Toward a Deterministic Model of Planetary Formation IV: Effects of Type-I Migration
In a further development of a deterministic planet-formation model (Ida & Lin
2004), we consider the effect of type-I migration of protoplanetary embryos due
to their tidal interaction with their nascent disks. During the early embedded
phase of protostellar disks, although embryos rapidly emerge in regions
interior to the ice line, uninhibited type-I migration leads to their efficient
self-clearing. But, embryos continue to form from residual planetesimals at
increasingly large radii, repeatedly migrate inward, and provide a main channel
of heavy element accretion onto their host stars. During the advanced stages of
disk evolution (a few Myr), the gas surface density declines to values
comparable to or smaller than that of the minimum mass nebula model and type-I
migration is no longer an effective disruption mechanism for mars-mass embryos.
Over wide ranges of initial disk surface densities and type-I migration
efficiency, the surviving population of embryos interior to the ice line has a
total mass several times that of the Earth. With this reservoir, there is an
adequate inventory of residual embryos to subsequently assemble into rocky
planets similar to those around the Sun. But, the onset of efficient gas
accretion requires the emergence and retention of cores, more massive than a
few M_earth, prior to the severe depletion of the disk gas. The formation
probability of gas giant planets and hence the predicted mass and semimajor
axis distributions of extrasolar gas giants are sensitively determined by the
strength of type-I migration. We suggest that the observed fraction of
solar-type stars with gas giant planets can be reproduced only if the actual
type-I migration time scale is an order of magnitude longer than that deduced
from linear theories.Comment: 32 pages, 8 figures, 1 table, accepted for publication in Ap
Permanence analysis of a concatenated coding scheme for error control
A concatenated coding scheme for error control in data communications is analyzed. In this scheme, the inner code is used for both error correction and detection, however, the outer code is used only for error detection. A retransmission is requested if the outer code detects the presence of errors after the inner code decoding. Probability of undetected error is derived and bounded. A particular example, proposed for the planetary program, is analyzed
Effect of the Milky Way on Magellanic Cloud structure
A combination of analytic models and n-body simulations implies that the
structural evolution of the Large Magellanic Cloud (LMC) is dominated by its
dynamical interaction with the Milky Way. Although expected at some level, the
scope of the involvement has significant observational consequences. First, LMC
disk orbits are torqued out of the disk plane, thickening the disk and
populating a spheroid. The torque results from direct forcing by the Milky Way
tide and, indirectly, from the drag between the LMC disk and its halo resulting
from the induced precession of the LMC disk. The latter is a newly reported
mechanism that can affect all satellite interations. However, the overall
torque can not isotropize the stellar orbits and their kinematics remains
disk-like. Such a kinematic signature is observed for nearly all LMC
populations. The extended disk distribution is predicted to increase the
microlensing toward the LMC. Second, the disk's binding energy slowly decreases
during this process, puffing up and priming the outer regions for subsequent
tidal stripping. Because the tidally stripped debris will be spatially
extended, the distribution of stripped stars is much more extended than the HI
Magellanic Stream. This is consistent with upper limits to stellar densities in
the gas stream and suggests a different strategy for detecting the stripped
stars. And, finally, the mass loss over several LMC orbits is predicted by
n-body simulation and the debris extends to tens of kiloparsecs from the tidal
boundary. Although the overall space density of the stripped stars is low,
possible existence of such intervening populations have been recently reported
and may be detectable using 2MASS.Comment: 15 pages, color Postscript figures, uses emulateapj.sty. Also
available from http://www-astro.phast.umass.edu/~weinberg/weinberg-pubs.htm
Gamma-Ray Bursts are Produced Predominately in the Early Universe
It is known that some observed gamma-ray bursts (GRBs) are produced at
cosmological distances and that the GRB production rate may follow the star
formation rate. We model the BATSE-detected intensity distribution of long GRBs
in order to determine their space density distribution and opening angle
distribution. Our main results are: the lower and upper distance limits to the
GRB production are z 0.24 and >10, respectively; the GRB opening angle follows
an exponential distribution and the mean opening angle is about 0.03 radians;
and the peak luminosity appears to be a better standard candle than the total
energy of a GRB.Comment: 12 pages, 2 figur
Homogenization of the Equations Governing the Flow Between a Slider and a Rough Spinning Disk
We have analyzed the behavior of the flow between a slider bearing and a hard-drive magnetic disk under two types of surface roughness. For both cases the length scale of the roughness along the surface is small as compared to the scale of the slider, so that a homogenization of the governing equations was performed.
For the case of longitudinal roughness, we derived a one-dimensional lubrication-type equation for the leading behavior of the pressure in the direction parallel to the velocity of the disk. The coefficients of the equation are determined by solving linear elliptic equations on a domain bounded by the gap height in the vertical direction and the period of the roughness in the span-wise direction.
For the case of transverse roughness the unsteady lubrication equations were reduced, following a multiple scale homogenization analysis, to a steady equation for the leading behavior of the pressure in the gap. The reduced equation involves certain averages of the gap height, but retains the same form of the usual steady, compressible lubrication equations.
Numerical calculations were performed for both cases, and the solution for the case of transverse roughness was shown be in excellent agreement with a corresponding numerical calculation of the original unsteady equations
Quantitative Rescattering Theory for high-order harmonic generation from molecules
The Quantitative Rescattering Theory (QRS) for high-order harmonic generation
(HHG) by intense laser pulses is presented. According to the QRS, HHG spectra
can be expressed as a product of a returning electron wave packet and the
photo-recombination differential cross section of the {\em laser-free}
continuum electron back to the initial bound state. We show that the shape of
the returning electron wave packet is determined mostly by the laser only. The
returning electron wave packets can be obtained from the strong-field
approximation or from the solution of the time-dependent Schr\"odinger equation
(TDSE) for a reference atom. The validity of the QRS is carefully examined by
checking against accurate results for both harmonic magnitude and phase from
the solution of the TDSE for atomic targets within the single active electron
approximation. Combining with accurate transition dipoles obtained from
state-of-the-art molecular photoionization calculations, we further show that
available experimental measurements for HHG from partially aligned molecules
can be explained by the QRS. Our results show that quantitative description of
the HHG from aligned molecules has become possible. Since infrared lasers of
pulse durations of a few femtoseconds are easily available in the laboratory,
they may be used for dynamic imaging of a transient molecule with femtosecond
temporal resolutions.Comment: 50 pages, 15 figure
- …