100,484 research outputs found

    Diquarks, Pentaquarks and Dibaryons

    Full text link
    We explore the connection between pentaquarks and dibaryons composed of three diquarks in the framework of the diquark model. With the available experimental data on H dibaryon, we estimate the Pauli blocking and annihilation effects and constrain the P=−P=- pentaquark SU(3)FSU(3)_F singlet mass. Using the Θ+\Theta^+ pentaquark mass, we estimate P=−P=- dibaryon mass

    Toward a Deterministic Model of Planetary Formation IV: Effects of Type-I Migration

    Full text link
    In a further development of a deterministic planet-formation model (Ida & Lin 2004), we consider the effect of type-I migration of protoplanetary embryos due to their tidal interaction with their nascent disks. During the early embedded phase of protostellar disks, although embryos rapidly emerge in regions interior to the ice line, uninhibited type-I migration leads to their efficient self-clearing. But, embryos continue to form from residual planetesimals at increasingly large radii, repeatedly migrate inward, and provide a main channel of heavy element accretion onto their host stars. During the advanced stages of disk evolution (a few Myr), the gas surface density declines to values comparable to or smaller than that of the minimum mass nebula model and type-I migration is no longer an effective disruption mechanism for mars-mass embryos. Over wide ranges of initial disk surface densities and type-I migration efficiency, the surviving population of embryos interior to the ice line has a total mass several times that of the Earth. With this reservoir, there is an adequate inventory of residual embryos to subsequently assemble into rocky planets similar to those around the Sun. But, the onset of efficient gas accretion requires the emergence and retention of cores, more massive than a few M_earth, prior to the severe depletion of the disk gas. The formation probability of gas giant planets and hence the predicted mass and semimajor axis distributions of extrasolar gas giants are sensitively determined by the strength of type-I migration. We suggest that the observed fraction of solar-type stars with gas giant planets can be reproduced only if the actual type-I migration time scale is an order of magnitude longer than that deduced from linear theories.Comment: 32 pages, 8 figures, 1 table, accepted for publication in Ap

    Permanence analysis of a concatenated coding scheme for error control

    Get PDF
    A concatenated coding scheme for error control in data communications is analyzed. In this scheme, the inner code is used for both error correction and detection, however, the outer code is used only for error detection. A retransmission is requested if the outer code detects the presence of errors after the inner code decoding. Probability of undetected error is derived and bounded. A particular example, proposed for the planetary program, is analyzed

    Effect of the Milky Way on Magellanic Cloud structure

    Get PDF
    A combination of analytic models and n-body simulations implies that the structural evolution of the Large Magellanic Cloud (LMC) is dominated by its dynamical interaction with the Milky Way. Although expected at some level, the scope of the involvement has significant observational consequences. First, LMC disk orbits are torqued out of the disk plane, thickening the disk and populating a spheroid. The torque results from direct forcing by the Milky Way tide and, indirectly, from the drag between the LMC disk and its halo resulting from the induced precession of the LMC disk. The latter is a newly reported mechanism that can affect all satellite interations. However, the overall torque can not isotropize the stellar orbits and their kinematics remains disk-like. Such a kinematic signature is observed for nearly all LMC populations. The extended disk distribution is predicted to increase the microlensing toward the LMC. Second, the disk's binding energy slowly decreases during this process, puffing up and priming the outer regions for subsequent tidal stripping. Because the tidally stripped debris will be spatially extended, the distribution of stripped stars is much more extended than the HI Magellanic Stream. This is consistent with upper limits to stellar densities in the gas stream and suggests a different strategy for detecting the stripped stars. And, finally, the mass loss over several LMC orbits is predicted by n-body simulation and the debris extends to tens of kiloparsecs from the tidal boundary. Although the overall space density of the stripped stars is low, possible existence of such intervening populations have been recently reported and may be detectable using 2MASS.Comment: 15 pages, color Postscript figures, uses emulateapj.sty. Also available from http://www-astro.phast.umass.edu/~weinberg/weinberg-pubs.htm

    Gamma-Ray Bursts are Produced Predominately in the Early Universe

    Full text link
    It is known that some observed gamma-ray bursts (GRBs) are produced at cosmological distances and that the GRB production rate may follow the star formation rate. We model the BATSE-detected intensity distribution of long GRBs in order to determine their space density distribution and opening angle distribution. Our main results are: the lower and upper distance limits to the GRB production are z 0.24 and >10, respectively; the GRB opening angle follows an exponential distribution and the mean opening angle is about 0.03 radians; and the peak luminosity appears to be a better standard candle than the total energy of a GRB.Comment: 12 pages, 2 figur

    Homogenization of the Equations Governing the Flow Between a Slider and a Rough Spinning Disk

    Get PDF
    We have analyzed the behavior of the flow between a slider bearing and a hard-drive magnetic disk under two types of surface roughness. For both cases the length scale of the roughness along the surface is small as compared to the scale of the slider, so that a homogenization of the governing equations was performed. For the case of longitudinal roughness, we derived a one-dimensional lubrication-type equation for the leading behavior of the pressure in the direction parallel to the velocity of the disk. The coefficients of the equation are determined by solving linear elliptic equations on a domain bounded by the gap height in the vertical direction and the period of the roughness in the span-wise direction. For the case of transverse roughness the unsteady lubrication equations were reduced, following a multiple scale homogenization analysis, to a steady equation for the leading behavior of the pressure in the gap. The reduced equation involves certain averages of the gap height, but retains the same form of the usual steady, compressible lubrication equations. Numerical calculations were performed for both cases, and the solution for the case of transverse roughness was shown be in excellent agreement with a corresponding numerical calculation of the original unsteady equations

    Quantitative Rescattering Theory for high-order harmonic generation from molecules

    Get PDF
    The Quantitative Rescattering Theory (QRS) for high-order harmonic generation (HHG) by intense laser pulses is presented. According to the QRS, HHG spectra can be expressed as a product of a returning electron wave packet and the photo-recombination differential cross section of the {\em laser-free} continuum electron back to the initial bound state. We show that the shape of the returning electron wave packet is determined mostly by the laser only. The returning electron wave packets can be obtained from the strong-field approximation or from the solution of the time-dependent Schr\"odinger equation (TDSE) for a reference atom. The validity of the QRS is carefully examined by checking against accurate results for both harmonic magnitude and phase from the solution of the TDSE for atomic targets within the single active electron approximation. Combining with accurate transition dipoles obtained from state-of-the-art molecular photoionization calculations, we further show that available experimental measurements for HHG from partially aligned molecules can be explained by the QRS. Our results show that quantitative description of the HHG from aligned molecules has become possible. Since infrared lasers of pulse durations of a few femtoseconds are easily available in the laboratory, they may be used for dynamic imaging of a transient molecule with femtosecond temporal resolutions.Comment: 50 pages, 15 figure
    • …
    corecore