33 research outputs found

    Upper bounds on quantum query complexity inspired by the Elitzur-Vaidman bomb tester

    Get PDF
    Inspired by the Elitzur-Vaidman bomb testing problem [arXiv:hep-th/9305002], we introduce a new query complexity model, which we call bomb query complexity B(f)B(f). We investigate its relationship with the usual quantum query complexity Q(f)Q(f), and show that B(f)=Θ(Q(f)2)B(f)=\Theta(Q(f)^2). This result gives a new method to upper bound the quantum query complexity: we give a method of finding bomb query algorithms from classical algorithms, which then provide nonconstructive upper bounds on Q(f)=Θ(B(f))Q(f)=\Theta(\sqrt{B(f)}). We subsequently were able to give explicit quantum algorithms matching our upper bound method. We apply this method on the single-source shortest paths problem on unweighted graphs, obtaining an algorithm with O(n1.5)O(n^{1.5}) quantum query complexity, improving the best known algorithm of O(n1.5logn)O(n^{1.5}\sqrt{\log n}) [arXiv:quant-ph/0606127]. Applying this method to the maximum bipartite matching problem gives an O(n1.75)O(n^{1.75}) algorithm, improving the best known trivial O(n2)O(n^2) upper bound.Comment: 32 pages. Minor revisions and corrections. Regev and Schiff's proof that P(OR) = \Omega(N) remove

    A Complete Characterization of Unitary Quantum Space

    Get PDF
    Motivated by understanding the power of quantum computation with restricted number of qubits, we give two complete characterizations of unitary quantum space bounded computation. First we show that approximating an element of the inverse of a well-conditioned efficiently encoded 2^k(n) x 2^k(n) matrix is complete for the class of problems solvable by quantum circuits acting on O(k(n)) qubits with all measurements at the end of the computation. Similarly, estimating the minimum eigenvalue of an efficiently encoded Hermitian 2^k(n) x 2^k(n) matrix is also complete for this class. In the logspace case, our results improve on previous results of Ta-Shma by giving new space-efficient quantum algorithms that avoid intermediate measurements, as well as showing matching hardness results. Additionally, as a consequence we show that preciseQMA, the version of QMA with exponentially small completeness-soundess gap, is equal to PSPACE. Thus, the problem of estimating the minimum eigenvalue of a local Hamiltonian to inverse exponential precision is PSPACE-complete, which we show holds even in the frustration-free case. Finally, we can use this characterization to give a provable setting in which the ability to prepare the ground state of a local Hamiltonian is more powerful than the ability to prepare PEPS states. Interestingly, by suitably changing the parameterization of either of these problems we can completely characterize the power of quantum computation with simultaneously bounded time and space

    Oracles with Costs

    Get PDF
    While powerful tools have been developed to analyze quantum query complexity, there are still many natural problems that do not fit neatly into the black box model of oracles. We create a new model that allows multiple oracles with differing costs. This model captures more of the difficulty of certain natural problems. We test this model on a simple problem, Search with Two Oracles, for which we create a quantum algorithm that we prove is asymptotically optimal. We further give some evidence, using a geometric picture of Grover\u27s algorithm, that our algorithm is exactly optimal

    Space-Efficient Error Reduction for Unitary Quantum Computations

    Get PDF
    This paper presents a general space-efficient method for error reduction for unitary quantum computation. Consider a polynomial-time quantum computation with completeness c and soundness s, either with or without a witness (corresponding to QMA and BQP, respectively). To convert this computation into a new computation with error at most 2^{-p}, the most space-efficient method known requires extra workspace of O(p*log(1/(c-s))) qubits. This space requirement is too large for scenarios like logarithmic-space quantum computations. This paper shows an errorreduction method for unitary quantum computations (i.e., computations without intermediate measurements) that requires extra workspace of just O(log(p/(c-s))) qubits. This in particular gives the first method of strong amplification for logarithmic-space unitary quantum computations with two-sided bounded error. This also leads to a number of consequences in complexity theory, such as the uselessness of quantum witnesses in bounded-error logarithmic-space unitary quantum computations, the PSPACE upper bound for QMA with exponentially-small completeness-soundness gap, and strong amplification for matchgate computations

    Quantum SDP Solvers: Large Speed-Ups, Optimality, and Applications to Quantum Learning

    Get PDF
    We give two new quantum algorithms for solving semidefinite programs (SDPs) providing quantum speed-ups. We consider SDP instances with m constraint matrices, each of dimension n, rank at most r, and sparsity s. The first algorithm assumes an input model where one is given access to an oracle to the entries of the matrices at unit cost. We show that it has run time O~(s^2 (sqrt{m} epsilon^{-10} + sqrt{n} epsilon^{-12})), with epsilon the error of the solution. This gives an optimal dependence in terms of m, n and quadratic improvement over previous quantum algorithms (when m ~~ n). The second algorithm assumes a fully quantum input model in which the input matrices are given as quantum states. We show that its run time is O~(sqrt{m}+poly(r))*poly(log m,log n,B,epsilon^{-1}), with B an upper bound on the trace-norm of all input matrices. In particular the complexity depends only polylogarithmically in n and polynomially in r. We apply the second SDP solver to learn a good description of a quantum state with respect to a set of measurements: Given m measurements and a supply of copies of an unknown state rho with rank at most r, we show we can find in time sqrt{m}*poly(log m,log n,r,epsilon^{-1}) a description of the state as a quantum circuit preparing a density matrix which has the same expectation values as rho on the m measurements, up to error epsilon. The density matrix obtained is an approximation to the maximum entropy state consistent with the measurement data considered in Jaynes\u27 principle from statistical mechanics. As in previous work, we obtain our algorithm by "quantizing" classical SDP solvers based on the matrix multiplicative weight update method. One of our main technical contributions is a quantum Gibbs state sampler for low-rank Hamiltonians, given quantum states encoding these Hamiltonians, with a poly-logarithmic dependence on its dimension, which is based on ideas developed in quantum principal component analysis. We also develop a "fast" quantum OR lemma with a quadratic improvement in gate complexity over the construction of Harrow et al. [Harrow et al., 2017]. We believe both techniques might be of independent interest

    Vortex interactions in a thin platelet superconductor

    Full text link
    The thermal fluctations of vortices in a superconductor can be usefully mapped onto the quantum fluctations of a collection of bosons at T=0 moving in 2 dimensions. When the superconductor is a thin platelet with the magnetic field parallel to its surface, the interacting quantum bosons are effectively moving in 1 dimension, allowing for powerful Luttinger liquid methods to be applied. Here we consider how this 1 dimensional limit is approached, studying the interaction of vortices with the platelet surfaces and each other. Using realistic parameters and vortex interactions for an underdoped YBCO platelet we determine the scattering length, a, characterizing the low energy interaction of a vortex pair as a function of the platelet thickness. a determines the Luttinger parameter, g, for the quantum system at low densities, n_0: g -> 1-2an_0
    corecore