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Abstract
While powerful tools have been developed to analyze quantum query complexity, there are still
many natural problems that do not fit neatly into the black box model of oracles. We create a
new model that allows multiple oracles with differing costs. This model captures more of the
difficulty of certain natural problems. We test this model on a simple problem, Search with Two
Oracles, for which we create a quantum algorithm that we prove is asymptotically optimal. We
further give some evidence, using a geometric picture of Grover’s algorithm, that our algorithm
is exactly optimal.
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1 Introduction

The standard oracle model is a powerful paradigm for understanding quantum computers.
Tools such as the adversary semidefinite program [12, 13], learning graphs [5, 6], and the
polynomial method [4] allow us to accurately characterize the quantum query complexity
[1, 7] of many problems of interest.

However, the oracle model does not capture the full power or challenges of quantum
computing. For example, problems such as k-SAT do not fit easily into the oracle model.
Additionally, while the query complexity of the hidden subgroup problem is known to be
polynomial in the size of the problem [11], for some non-abelian groups there is no efficient
algorithm.

In this paper, we describe a variation of the oracle model. We have access to two oracles,
rather than a single oracle1, but one oracle is more expensive to use. In the standard oracle
model, the figure of merit is the query complexity, which is the minimum number of queries
needed to an oracle to evaluate a function. In our model, the figure of merit is the cost
complexity, which is the minimum cost needed to evaluate a function using multiple oracles
with different costs.

To motivate this model, we consider the following fact: in some search problems we want
to find an element in a set that satisfies a property that is expensive to test. However, often
another less expensive test is available that can narrow down the search range but is not
conclusive. We give three examples of problems where such less expensive, less conclusive
tests are natural. In each example, Test 1 is more expensive to run but is conclusive, while
Test 2 is cheaper to run but allows some non-solutions to pass.

1 The model can easily be extended to more than two oracles, but for simplicity, we limit ourselves to two.
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2 Oracles with Costs

In the problem of k-SAT on n bits, we would like to find an assignment x ∈ {0, 1}n such
that all clauses are satisfied. Consider an algorithm for k-SAT that runs two types of
tests on a possible assignment x:
1. Check whether all clauses are satisfied.
2. Check whether some subset of the clauses are satisfied.
Given a graph A and a set of graphs {B1, · · · , Bp}, we would like to find a graph Bi
isomorphic to A. Consider an algorithm that runs two types of tests on a graph Bi:
1. Check whether Bi is isomorphic to A (say by brute force search).
2. Check whether the adjacency matrices of Bi and A have the same spectrum.
In the decision variant of the traveling salesman problem, given a positively weighted
N -graph G and a positive number b, we would like to find a tour of the vertices of G that
uses cost no more than b. Given a partial tour of length N/2, we can run two types of
tests:
1. Check whether the partial tour can be completed to an N -vertex tour that has cost at

most b, by using brute force search.
2. Check whether the sum of the weights of the N/2 edges traversed in the partial tour is

bigger than b.

In all three examples, the two tests can be implemented as unitaries O1,O2 that act
as Oi|x〉|y〉 = |x〉|y ⊕ fi(x)〉. Here fi(x) = 1 if assignment x passes Test i and fi(x) = 0
otherwise. These two unitaries will play the role of oracles with different costs.

None of the problems listed above are typically thought of as oracle problems, because
in each problem, there is more information than can easily be incorporated into a single
oracle. However, with multiple oracles, the information can be distributed among different
oracles. Using different costs for different oracles allows us to include information about
the time required to access information. We see that cost complexity can capture certain
aspects of a problem that can not be easily accounted for in the standard oracle model;
we hope this model will provide new insight into problems previously thought beyond the
tools of query algorithms. We note that we do not expect these techniques to allow us to
solve NP-complete problems in polynomial time. Rather, our goal is to potentially improve
upon existing exponential time algorithms, and create connections between standard oracle
problems and problems that seem far from typical oracle problems.

Problems such as those described above can easily be recast into an oracle problem, which
we call Search with Two Oracles (STO). In this work, we focus on the problem of STO. We
tightly characterize the quantum cost complexity of this problem, and give several techniques
for putting lower bounds on quantum cost complexity. We also show that the cost complexity
of STO is the same whether or not the oracles can be accessed using a control operation;
that is, accessing the oracles in superposition gives no added power.

We also attempt to exactly bound (rather than asymptotically bound) the cost complexity
of STO. Usually, one is not particularly interested in proving exact optimality, but we have
several reasons for wanting to explore this problem. Few quantum algorithms are known to
be exactly optimal; Grover’s algorithm and parity are two examples [10, 4]. STO is a very
simple extension of a standard search problem, so it seems like a good candidate problem for
obtaining another exact lower bound. Proving that our algorithm is exactly optimal would
provide evidence that amplitude amplification is exactly optimal in the case of no additional
structure (i.e. when we treat the base algorithm as a black box). Additionally, while we can
obtain asymptotically tight bounds for the problem of STO, for a simple extension of STO
to logN oracles (where N is the size of the search space), these techniques fail. However, if
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we could obtain tighter bounds for STO, we should be able to get a better characterization
of the cost complexity for these more complex problems.

Finally, we compare the quantum cost complexity of STO to the classical cost complexity.
We show a polynomial reduction in cost for the quantum version. Moreover, we show that
the optimal quantum and classical algorithms behave qualitatively differently, highlighting
the power of quantum algorithms.

In Section 2, we describe cost complexity and define STO. In Section 3, we describe
optimal quantum algorithms for STO, and in Section 4, we put lower bounds on the cost
complexity of STO. Finally, we look at the classical cost complexity of STO in Section 5.

2 Cost Complexity, STO, and Relation to Previous Work

Cost complexity is very closely related to query complexity. For background on query
complexity, see [1, 7].

We first define cost complexity. In the following, we use the notation [N ] ≡ {1, . . . , N}.
Given the input (f1, f2) ∈ D, which is a pair of functions f1, f2 : [N ]→ {0, 1}, we want to
calculate F where F : D → {0, 1}. Let f1 be associated with cost c1 and f2 be associated with
cost c2. Depending on the type of algorithm (e.g. classical, quantum), these two functions
are accessed in different ways.

In the classical setting, consider a randomized classical algorithm Ac for F that makes q1
queries to f1, and q2 queries to f2. Then the cost of this algorithm is

Cost(Ac) = q1c1 + q2c2. (1)

Let Ac,ε be the set of randomized classical algorithms that solve F with success probability
at least 1− ε on all inputs in D. Then the classical randomized cost complexity (RCC) of F is

RCCε(F ) = min
Ac∈Ac,ε

Cost(Ac). (2)

In the quantum setting, let O1 and O2 be unitaries acting on the Hilbert space CN with
standard basis states |i〉 for i ∈ [N ] as Oj |i〉 = (−1)fj(i)|i〉 for j ∈ 1, 2. Consider a quantum
algorithm Aq that at each time step, can apply O1 or O2 or some other unitary that is
independent of f1 and f2, and which makes q1 queries to O1 and q2 queries to O2. Then the
cost of the algorithm Aq is

Cost(Aq) = q1c1 + q2c2. (3)

Let Aq,ε be the set of quantum algorithms that solve F with success probability at least
1− ε on all inputs in D. Then the quantum cost complexity (QCC) of F is

QCCε(F ) = min
Aq∈Aq,ε

Cost(Aq). (4)

Finally, we consider quantum algorithms that can access oracles in superposition. Let
O1 and O2 be as above, and let O0 = I, the N × N identity matrix. We now consider a
quantum algorithm that has access to a controlled operation CO that acts on the the Hilbert
space C3 ⊗ CN ⊗ CV (CV is a workspace register) with standard basis states |b〉|i〉|v〉 for
i ∈ [N ], v ∈ [V ], and b ∈ {0, 1, 2} as CO|b, i〉 = |b〉Ob|i〉|v〉. Suppose the encoded functions
are f1 and f2. Then if an algorithm Aqs applies CO a total of T times over the course of
the algorithm to states

|ηtf1,f2
〉 =

2∑
b=0

N∑
i=1

V∑
v=1

αtf1,f2
(b, i, v)|b, i, v〉 (5)
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4 Oracles with Costs

for t ∈ [T ], the cost of the algorithm is

Cost(Aqs) = max
f1,f2

T∑
t=1

κ(ηtf1,f2
) where

κ(ηtf1,f2
) =


c1 if

∑
i,v |αtf1,f2

(1, i, v)|2 6= 0,
c2 if

∑
i,v |αtf1,f2

(1, i, v)|2 = 0 and
∑
i,v |αtf1,f2

(2, i, v)|2 6= 0,
0 if

∑
i,v |αtf1,f2

(1, i, v)|2 = 0 and
∑
i,v |αtf1,f2

(2, i, v)|2 = 0.
(6)

Let Aqs,ε be the set of quantum algorithms using CO that solve F with success probability
at least 1− ε on all inputs in D. Then the controlled quantum cost complexity (ConQCC) of
F is

ConQCCε(F ) = min
Aqs∈Aqs,ε

Cost(Aqs). (7)

The controlled quantum cost complexity is closely related to the time required in the model
of variable times introduced by Ambainis in [2].

Note that

ConQCCε(F ) ≤ QCCε(F ) ≤ RCCε(F ). (8)

For any of the cost complexities described above, if we do not include a subscript ε, then
the cost is assumed to apply for the case ε = 1/3.

Now that we have defined cost complexity, we introduce the problem of STO as a testbed
for tools and ideas that can hopefully be applied to more complex problems. More formally,
we give the definition of STO:

I Definition 1 (Search with Two Oracles (STO)). Let N and M be known positive integers
and let S ⊆ [N ] be an unknown set. There might or might not exist a special item i∗. If
i∗ exists, then one is promised that i∗ ∈ S and |S| = M . If i∗ doesn’t exist, the size of S is
arbitrary. Let f∗ and fS be two functions with domain [N ] and range {0, 1} such that

f∗(i) =
{

1 if i = i∗

0 if i 6= i∗ or i∗ doesn’t exist.
fS(i) =

{
1 if i ∈ S
0 if i /∈ S.

(9)

Then STO(f∗, fS) = 1 if i∗ exists, and 0 otherwise. c∗ is the cost associated with f∗ and cS
is the cost associated with fS , with c∗ ≥ cS .

cS and c∗ are assumed to depend on N and M, but our results hold for any form of that
dependence, so we leave off any explicit relationship.

Cost complexity, and STO in particular, are related to several existing oracle problems.
In the problem of STO, the function fS can be thought of as providing extra information or
advice about the function f∗. There have been several studies in which access to a single
oracle is supplemented with some extra information that can come in the form of another
oracle or classical information, e.g. [14, 15]. Previous works [3, 14] have considered multiple
oracles, but not with costs. Furthermore, the additional advice oracles considered in these
works tend to be somewhat unnatural, and are tailored to the specific problems considered.
As mentioned, ConQCC is related to the model of variable costs studied by Ambainis, in
which he considered a single oracle that has different costs for querying different items [2].
We also note that Cerf et al. [9] consider similar quantum algorithms in the context of
constraint satisfaction problems, but they do not approach the problem from an oracular
perspective.
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3 Quantum Algorithms for STO

We now describe quantum algorithms for solving STO2. These algorithms use the oracles
O∗ and OS directly, rather than the controlled version (i.e. CO) of these oracles. All of our
algorithms can be viewed as examples of amplitude amplification. Recall

I Theorem 2 (Amplitude Amplification [8]). Let T ⊂ [N ], α ∈ [0, 1], and let OT be an
quantum oracle that marks the elements of T . We define

|T 〉 = 1√
|T |

∑
i∈T
|i〉. (10)

Given an algorithm A that acts on a state |ψ0〉 and produces a state |ψA〉 such that |〈T |ψA〉| =
p, one can create a new algorithm B that applies OT , A, and A−1 each

τ =
⌈

arcsin
√

1− α− arcsin p
2 arcsin p

⌉
(11)

times, and which acts on the initial state |ψ0〉 and produces a state |ψB〉 such that

|ψB〉 =
√

1− α|T 〉+
√
α|T⊥〉, (12)

where 〈T |T⊥〉 = 0 and |T⊥〉 ∈ Span (|T 〉, |ψA〉).

This gives us the following Corollary:

I Corollary 3. Let A and τ be as in Theorem 2, and assume OT has cost cT while A and
A−1 have cost cA. Then there exists a algorithm B that applies OT , A and A−1 not in
superposition, and produces the state |T 〉 with probability 1− ε such that

Cost(B) = τ (cT + 2cA) . (13)

In the following, we describe three algorithms for STO. We consider the limit that
M,N/M →∞ to simplify our analysis, but this limit still captures the essential behavior of
the algorithms. We use the following notation:

|N〉 = 1√
N

N∑
i=1
|i〉,

|S〉 = 1√
M

∑
i∈S
|i〉. (14)

We have a slight abuse of notation, since |N〉 could refer either to the equal superposition
state, or the N th standard basis state. However, whenever we write |N〉, we will always
mean the equal superposition state.

The first algorithm we consider ignores OS and performs a Grover search for i∗ using O∗:

2 For the purpose of describing these algorithms, we assume that i∗ exists. A single application of O∗ at
the end of the algorithm can be used to check (with appropriate probability) whether or not i∗ exists,
at a cost of c∗.

TQC’15



6 Oracles with Costs

I Algorithm 1 (Grover’s Search). Prepare the state |N〉 at cost 0. Set A equal to the identity.
Then by Corollary 3 there exists an algorithm B that produces the state |i∗〉 with probability
1− ε with cost

c∗

⌈
arcsin

√
1− ε− arcsin 1√

N

2 arcsin 1√
N

⌉
. (15)

In the limit of N →∞, the cost becomes

c∗ arcsin
√

1− ε
√
N. (16)

However, if OS comes to us cheaply, we would like to take advantage of it: The following
algorithm first rotates |N〉 to |S〉 (using OS), and then rotates |S〉 to |i∗〉 (using both OS
and O∗).

I Algorithm 2. Prepare the state |N〉 at cost 0. Set A equal to the identity. Since |〈N |S〉| =√
M/N , by Corollary 3 there exists an algorithm B that with probability 1 produces the state
|S〉 at cost

cS


(
π
2 − arcsin

√
M
N

)
2 arcsin

√
M
N

 . (17)

Now |〈i∗|S〉| =
√

1/M , so using Corollary 3 again, there exists an algorithm C that with
probability 1− ε produces the state |i∗〉 at cost

⌈
arcsin

√
1− ε− arcsin 1√

M

2 arcsin 1√
M

⌉c∗ + 2cS


(
π
2 − arcsin

√
M
N

)
2 arcsin

√
M
N


 . (18)

Dropping terms of size at most O(M−1/2) or O
(
(M/N)1/2) of the zeroth order terms, the

cost becomes

arcsin
√

1− ε
4

(
2c∗
√
M + πcS

√
N
)
. (19)

Combining Algorithms 1 and 2, we have that

QCC(STO) = O
(

min
{
c∗
√
N, c∗

√
M + cS

√
N
})

= O
(

max
{
c∗
√
M, cS

√
N
})

. (20)

In Section 4, we will show that this cost (Eq. (20)) is asymptotically optimal. This means
that Algorithm 2 is always asymptotically optimal, although Algorithm 1 has lower cost
when c∗ ≈ cS . However, it turns out that there is an algorithm that has lower cost than
either Algorithm 1 or 2. In Section 4, we give evidence that this final algorithm, which we
call the Hybrid Algorithm, is not just asymptotically optimal, but exactly optimal.

The two algorithms we have so far presented can be summarized as follows: Algorithm 1
directly performs Grover rotations to rotate |N〉 to |i∗〉, while Algorithm 2 first rotates |N〉
to |S〉, then rotates |S〉 to |i∗〉. The final algorithm we consider, the Hybrid Algorithm, first
rotates |N〉 to some superposition of |N〉 and |S〉, and then rotates to |i∗〉.
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I Algorithm 3 (Hybrid Algorithm). Prepare the state |N〉 at cost 0. Set A equal to the
identity. Since |〈N |S〉| =

√
M/N , by Theorem 2 and Corollary 3 there exists an algorithm

B that produces a state |ψB〉 at cost

cS


(

arcsin
√

1− α− arcsin
√

M
N

)
2 arcsin

√
M
N

 . (21)

where

|ψB〉 =
√

1− α|S〉+
√
α|S⊥〉. (22)

By Theorem 2, |S⊥〉 is a linear combination of |S〉 and |N〉 but is orthogonal to |S〉. Therefore,
|S⊥〉 is a superposition of all elements not in S, and so 〈i∗|S⊥〉 = 0. Thus
√

1− α√
M

= 〈ψB|i∗〉. (23)

Applying Corollary 3 again, we can create an algorithm C that has cost
arcsin

√
1− ε− arcsin

√
1−α√
M

2 arcsin
√

1−α√
M


c∗ + 2cS


(

arcsin
√

1− α− arcsin
√

M
N

)
2 arcsin

√
M
N


 (24)

and produces the state |i∗〉 with probability 1− ε. In Appendix A, we show there is a choice
of α such that, dropping terms of size at most O(M−1/2) or O((M/N)1/4) that of the zeroth
order terms, the cost is

Cost(Hybrid) = cS
√
N arcsin

√
1− ε

2 sec
(
φopt +

√
M

N

)
, (25)

where φopt is given by

φopt = max

0
φ : tan

(
φ+

√
M
N

)
= φ+ c∗

cS

√
M
N .

(26)

When cS is close to c∗, this algorithm approximates Algorithm 1. When cS is very small
compared to c∗, it approximates Algorithm 2. Otherwise, it, in effect, interpolates between
the two algorithms.

4 Lower Bound on Quantum Cost Complexity of STO

Several techniques give asymptotically tight lower bounds on the quantum cost complexity
of STO. We will briefly sketch two approaches for bounding the quantum cost complexity
(QCC), and then discuss a bound on controlled quantum cost complexity (ConQCC) in
detail. The fact that so many approaches give good lower bounds is encouraging; this means
many techniques from (or variations on) the standard query complexity toolbox can be
applied.

Our lower bound on ConQCC(STO) is asymptotically tight with the algorithms of
Section 3, i.e. Eq. (20), even though those algorithms do not use controlled oracles. Because
algorithms that use controlled versions of the oracles are more powerful than oracles that

TQC’15



8 Oracles with Costs

can not access controlled versions (see Eq. (8)), this result proves that not only are our
algorithms for STO asymptotically optimal, but having access to a controlled version of the
oracles for STO does not give an advantage.

When discussing lower bounds on the cost of STO, we will often refer to the SEARCH
problem. We call SEARCH the problem in which one is given a function f∗ : [N ]→ {0, 1}
such that there is exactly zero or one element i∗ such that f∗(i∗) = 1, and one would like
to determine if there is such an element i∗; in other words, SEARCH is computing OR(f∗)
with a promise on f∗.

Here are brief descriptions of two methods for lower bounding QCC. We describe them
in the context of STO, but they could be applied more generally.

Oracle Simulation: Suppose one only has an oracle O∗. Then one could use this to simulate
an oracle OS by applying O∗, and then subsequently randomly choosing M − 1 items to
mark. If M � N , with high probability, the chosen M − 1 items will not include O∗, and
this simulated oracle will act identically to a true OS . Now any algorithm for STO that
uses this simulated oracle will actually only use O∗ to find the marked item i∗, and so the
problem reduces to SEARCH. Well-known quantum lower bounds on SEARCH [7] then give
a lower bound on the total number of queries to either O∗ or the simulated OS , which in
turn can be used to put a lower bound on the cost. For more details on oracle simulation, see
Section 5, in which we use oracle simulation to bound the classical cost complexity of STO.

Adversary Method: One can create an adversary matrix whose rows and columns are
indexed by pairs of oracles (f∗, fS). This matrix can be used to create a progress function,
and then one can bound the progress that either oracle O∗ or OS can make. This gives lower
bounds on the queries needed to O∗ and OS to evaluate STO, which in turn can be used to
lower bound the cost of STO. In Appendix C, we detail how to create this bound for STO.

4.1 Lower Bound on Controlled Quantum Cost Complexity of STO
In this section, in order to lower bound ConQCC(STO), we consider a new problem in the
standard query model, which we call Expanded Search with Two Oracles (ESTO). We show
that if we had an algorithm A which could use the control oracle CO to solve STO with
cost cA, then we could create a new algorithm A′ to solve ESTO using O(cA) queries. We
then use the adversary method to lower bound the query complexity of ESTO, which in turn
puts a lower bound on ConQCC(STO). This strategy is inspired by Ambianis’s approach
for lower bounding the variable times search problem [2].

We first describe the problem ESTO. We suggest referencing Figure 1 during the de-
scription of the problem for a graphical interpretation. Let N, M, c∗ and cS be as in STO.
Without loss of generality, we can assume c∗, cS � 1. If they are not, we can multiply both
costs by some large factor K. Then the final cost is exactly a factor of K larger than it would
have been with the original costs. (If cS = 0, this approach does not work, but in that case,
STO reduces to SEARCH). We define

m∗ = max
{
i :
⌈π

4
√
i
⌉

+ 1 ≤ c∗, i ∈ Z
}
,

mS = max
{
i :
⌈π

4
√
i
⌉

+ 1 ≤ cS , i ∈ Z
}
,

ESTO queries an unknown function f : [N(mS + m∗)] → {0, 1}. We consider D1 =
{1, . . . , Nm∗} to be the “first part” of the domain of f , and D2 = {Nm∗+1, . . . , N(m∗+mS)}
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Figure 1 A diagram of a function f for which ESTO(f) = 1. The domain of f is divided into two
parts D1 and D2. Each of these sets are further divided into N sets of size m∗ and mS respectively.
These sets are labeled T 1

k for sets in D1, and T 2
k for sets in D2. We see there is exactly one value of

i ∈ D1 with value 1, and it is in the set T 1
k∗ . In the case shown in this figure, S = {1, k∗}, so both

T 2
k∗ and T 2

1 contain exactly one marked item.

to be the “second part” of the domain. We further divide D1 (D2) into N blocks of m∗ (mS)
elements respectively, where the elements T 1

k = {(k − 1)m∗ + 1, . . . , km∗} constitute the kth
block of D1, and the elements T 2

k = {Nm∗ + (k − 1)mS + 1, . . . , Nm∗ + kmS} constitute
the kth block of D2.

We are promised that there is either exactly zero or one value i∗ ∈ D1 such that f(i∗) = 1.
If there is such an i∗, we label the block it is in by k∗, so i∗ ∈ T 1

k∗
. Furthermore, if i∗ exists,

there is a set S ∈ [N ] such that |S| = M , k∗ ∈ S, and for each k ∈ S there is exactly one
value of i ∈ T 2

k such that f(i) = 1. Given such a function f , ESTO(f) = 1 if there is an item
i∗ ∈ D1 such that f(i∗) = 1, and 0 otherwise.

Given an algorithm A for STO that uses the control oracle CO and has cost cA, we can
create an algorithm A′ to solve ESTO that uses 2cA queries. Let ybj = 1 for b ∈ {1, 2} if
there is an element i ∈ T bj such that f(i) = 1, and 0 otherwise. Then by Claim 2 in [2],
there is an algorithm B that takes |b, j〉|0〉|0〉 → |b, j〉|ybj〉|ψbj〉 for some state |ψbj〉 and uses c∗
queries if b = 1 and cS queries if b = 2. At the cost of doubling the number of queries, we can
uncompute the final register. Thus there is an algorithm B′ that takes |b, j〉|0〉 → |b, j〉|ybj〉
and uses 2c∗ queries if b = 1 and 2cS queries if b = 2. We also allow for b = 0, in which case
the algorithm B′ applies the identity.

Then we can solve ESTO using our algorithm A for STO. In STO we are searching for a
specific element i∗ ∈ [N ] with certain properties, in ESTO, the search is for a specific block
k∗ ∈ [N ] with analogous properties. We replace an application of the controlled oracle C-O
to the state |b, i〉 with b ∈ {0, 1, 2} and i ∈ [N ] with an application of the algorithm B′ to the
state |b, i〉, (which corresponds to searching the block T bi , for b ∈ {1, 2} and i ∈ [N ], or doing
nothing if b = 0). The number of queries required by B′ will be twice cost of the equivalent
query made by A. Due to the specific structure of f , this algorithm will solve ESTO with a
number of queries equal to 2cA.

Now all that is left is to put a lower bound on the number of queries needed to solve
ESTO. We use Ambainis’s adversary bound:

I Theorem 4 (Basic Adversary Bound [1]). Let F (f(1), . . . , f(N)) be a function of N {0, 1}-
valued variables f(i), and let X, Y be two sets of inputs such that F (f) 6= F (g) if f ∈ X and
g ∈ Y. Let R ⊂ X × Y be such that

For every f ∈ X, there exist at least µ different g ∈ Y such that (f, g) ∈ R.
For every g ∈ Y , there exist at least µ′ different f ∈ X such that (f, g) ∈ R.
For every f ∈ X and i ∈ [N ], there are at most l different g ∈ Y such that (f, g) ∈ R
and f(i) 6= g(i).

TQC’15



10 Oracles with Costs

For every g ∈ Y and i ∈ [N ], there exist at least l′ different f ∈ X such that (f, g) ∈ R
and f(i) 6= g(i).

Then, any quantum algorithm computing F with error at most ε on all valid inputs uses at
least

1− 2
√
ε(1− ε)
2

√
µµ′

ll′
(27)

queries.

For the sets X and Y , we only consider functions f where in each block T bj , there is at
most 1 marked item. We denote by fk∗,i∗,S,S′ a function where i∗ ∈ D1 is the marked item,
k∗ is the block where the i∗ sits (or i∗ = k∗ = 0 if there is no marked item in D1), S is the
set of blocks in D2 that have exactly one marked item in each block, and S′ is a list of the
|S| items that are marked in the second part of the domain.

Let X be the set of all functions fk∗,i∗,S,S′ with k∗ 6= 0, i∗ 6= 0, |S| = M, and k∗ ∈ S. From
our definition of ESTO, these are functions for which the algorithm should output 1. Let Y be
the set of functions f0,0,T,T ′ with |T | = M−1. Then R is defined by (fk∗,i∗,S,S′ , f0,0,T,T ′) ∈ R
if and only if T ⊂ S, T ′ ⊂ S′, and k∗ /∈ T. With this definition of R, we have µ = 1 while
µ′ = (N −M + 1)m∗mS . Likewise l = 1 while l′ = max{mS ,m∗} = m∗ since c∗ ≥ cS .
Theorem 4 then gives that the number of queries required to solve ESTO, is at least

1− 2
√
ε(1− ε)
2

√
(N −M + 1)mS . (28)

Eq. (28) does not tell the full story; we can repeat this procedure with the set X the
same as before, but now the set Y includes all functions f0,0,S,S′ such that |S| = M. Then
we choose (fk∗,i∗,S,S′ , f0,0,T,T ′) ∈ R if and only if T = S and T ′ = S′. With this definition of
R, we have µ = 1, while µ′ = Mm∗. Likewise l = 1 while l′ = 1. Again using Theorem 4, we
have that the number of queries required to solve ESTO is at least

1− 2
√
ε(1− ε)
2

√
Mm∗. (29)

Since c∗, cS � 1, we have m∗ = Ω((c∗)2) and mS = Ω((cS)2), so combining Eq. (28) and
Eq. (29), and using the fact that a lower bound on the query complexity of ESTO gives a
lower bound on the controlled quantum cost complexity of of STO, we have

ConQCCε(STO) ≥
1− 2

√
ε(1− ε)
4 ×max

{√
Mm∗,

√
(N −M + 1)mS

}
(30)

= Ω
(

max
{√

Mc∗,
√

(N −M + 1)cS
})

. (31)

With Eq. (20), this bound proves our algorithms are asymptotically optimal. In Figure 2,
we compare the bound given by the reduction to ESTO with the Hybrid Algorithm. Even
though the functions are asymptotically tight, the forms of these two bounds are quite
different.

4.2 Exact Lower Bound for Cost Complexity of STO
In the introduction, we mentioned several reasons for wanting to prove exact optimality of
our algorithm for STO. Aside from finding an example besides Grover’s algorithm of an
exactly optimal algorithm, proving our algorithm for STO is optimal would have several
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Figure 2 The solid line is the cost of the hybrid algorithm, while the dashed line is the lower
bound on the cost given by Eq. (30). The cost is calculated with c∗ = 1, N = 104, M = 400 and
ε = 0 while cS is varied.

other implications. First, the algorithms described in Section 3 are all based on amplitude
amplification, so if we can prove these approaches are optimal, that would give evidence that
amplitude amplification is an exactly optimal algorithm for certain types of unstructured
search problems.

Second, if we consider an extension of STO to many oracles, we can no longer prove
asymptotic optimality of our amplitude amplification algorithm. Note that in amplitude
amplification, (see Theorem 2), the inner algorithm (A) is applied two times for each
application of the oracle that identifies the target state (if A = A−1). This factor of two is
not accounted for in our lower bound of Section 4.1. While this factor of two can be swept
under the rug using asymptotic notation, if we consider a problem with k nested oracles,
and try to apply a similar strategy as for STO and use nested amplitude amplification, the
innermost algorithm will accumulate an extra factor of 2k in the number of times it must
be applied. Using a strategy similar to Section 4.1 to lower bound this problem will not
catch that factor of 2k, for the same reason the factor of 2 is not characterized by the oracle
simulation and adversary method. In the case of k = logN nested oracles, our bounds will no
longer be asymptotically tight. Thus, if we can find an exact bound in the case of STO, we
might be able to extend it to get asymptotically tight bounds for the case of nested oracles,
providing evidence that multiple nestings of amplitude amplification are optimal for certain
problems.

We have found that proving an exactly tight lower bound for STO is a challenge, and in
fact we can only prove the hybrid algorithm is optimal in a limited setting. The difficulty in
proving optimality even in this limited case provides insight into the difficulty of the more
general case.

The restricted setting we investigate is to only consider Grover-like algorithms.

I Definition 5. A Grover-like algorithm with oracles {O1, . . . ,Ol} that act on an N -
dimensional Hilbert space must:

Use only an N -dimensional Hilbert space as its workspace,
Initialize in the equal superposition state |N〉 = 1√

N

∑N
i=1 |i〉,

Use only the unitaries {O1, . . . ,Ol} and G = I− 2|N〉〈N | , and
End with a measurement on the standard basis.

TQC’15



12 Oracles with Costs

If we consider Grover-like algorithms for SEARCH, the state of the system is restricted
to a 2-dimensional subspace spanned by |N〉 and |i∗〉. Since G2 = O2

∗ = I, the only possible
algorithm is alternating G and O∗, and one can easily track the progress of the state through
the two dimensional space towards |i∗〉, thus trivially proving that in this setting, Grover’s
algorithm is exactly optimal.

We will see in the proof of Theorem 6 that for STO, the picture becomes much more
complicated. In fact, even in the restricted setting of Grover-like algorithms, we need an
additional assumption to prove optimality. In particular, we show

I Theorem 6 (Exact Lower Bound). The cost of every Grover-like algorithm for STO that
succeeds with probability at least 1− ε for a constant ε is at least

cS
√
N arcsin

√
1− ε

2 sec
(
φopt +

√
M/N

)
, (32)

where φopt satisfies

φopt = max

0,
φ : tan

(
φ+

√
M
N

)
= φ+ c∗

cS

√
M
N .

(33)

We also require the conditions M,N/M →∞ and C → 0, where

C ≡ cS
√
N

c∗
√
ε2M cos

(
φopt +

√
M/N

) . (34)

Theorem 6 matches the cost of our hybrid algorithm, Eq. (25).
The proof of Theorem 6 can be found in Appendix B; here we provide a very brief sketch.

Just as a Grover-like algorithm for standard search can be thought of as acting on a two
dimensional subspace of the full N -dimensional Hilbert space, a Grover-like algorithm for
STO can be thought of as acting on a three-dimensional subspace. We create a progress
function as a position of the state in this subspace such that G has no affect on the progress
function, while O∗ and OS can cause the progress function to increase or decrease. We then
show that the increase in the progress function due to one of the oracles, divided by the
cost of that oracle, is bounded. In other words, for a given cost, we can only increase the
progress function by a certain amount, no matter which oracle is used. We finally take the
total change in the progress function necessary to achieve success, and divide by the change
in progress per cost to put a lower bound the cost.

5 Classical Cost Complexity of STO

In this section, we give bounds on the classical randomized cost complexity (RCC) of STO.
We will examine both the exact and bounded error cost complexity. For the exact cost
complexity, we see that there are two classical algorithms that resemble Algorithm 1 and
Algorithm 2, but whereas in the quantum case, it is possible to do better with the Hybrid
Algorithm, we prove that there is no classical counterpart to the Hybrid Algorithm. In
the case of exact and bounded error cost complexity, we see a polynomial increase in cost
compared to the quantum case.

In the case of exact classical cost complexity, we have:

I Lemma 7. The exact (0-error) classical cost complexity of STO is

RCC0(STO) = min{Nc∗, (N − 1)cS +Mc∗}. (35)
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Proof. We consider an adversarial oracle that knows in advance the queries the algorithm
will make.

Recall that for i ∈ [N ], fS identifies whether i ∈ S and f∗ identifies whether i = i∗. We
say an item has been completely queried if it has been queried with fS , and is found to not
be an element of S, or if it has been queried with f∗. Then the adversarial oracle acts in the
following way:

The first M − 1 items that the algorithm queries using oracle fS are all elements of S.
If all elements except one have been queried (but not necessarily completely queried)
using either function f∗ or fS , the final element to be queried will be an element of S
(even if this element is not queried using fS).
The last element to be completely queried is the marked item, if it exists.

Any algorithm acting against this adversarial oracle that makes q queries using fS , has
worst-case cost at least

NcS +Mc∗ if q = N,

qcS + [(N − q) + (M − 1)]c∗ if N − 1 ≥ q ≥M − 1,
qcS +Nc∗ if M − 1 ≥ q ≥ 0. (36)

These expressions are minimized at q = N − 1 or q = 0, and we obtain

RCC0(STO) ≥ min{Nc∗, (N − 1)cS +Mc∗}. (37)

For the upper bound, consider the following two algorithms.

I Algorithm 4. Query all items using f∗. This algorithm will find the marked item if it
exists with certainty, and has cost Nc∗.

I Algorithm 5. Query all but the last item using fS. Then:
If M items of S have been found, query f∗ on these M items.
If M − 1 items of S have been found, query f∗ on these M − 1 items, and also the last
item (the item that was not queried using fS).
Otherwise |S| 6= M and therefore no marked item exists.

This algorithm will find the marked item if it exists with certainty, and has cost (N − 1)cS +
Mc∗.

Thus we have

RCC0(STO) ≤ min{Nc∗, (N − 1)cS +Mc∗}. (38)

J

Algorithm 1 can be thought of as the quantum version of Algorithm 4, while Algorithm
2 can be thought of as the quantum version of Algorithm 5. In the 0-error classical case,
these two approaches tell the whole story. However, in the quantum case, you can do better
with the Hybrid Algorithm. The Hybrid Algorithm works by doing something very quantum,
which is to partially search for the elements of S. In the classical case, this doesn’t work.
Once you’ve found an element of S, you’ve found it; there is no way to partially find an
element of S.

With Lemma 7, we’ve proven that in the 0-error case, we can obtain a polynomial
reduction in cost by using a quantum algorithm for STO. Next, we show this polynomial
reduction holds even in the case of bounded error algorithms. We do this by reducing STO
to the problem of SEARCH. Recall that for SEARCH, we have:

TQC’15



14 Oracles with Costs

I Lemma 8. Any randomized classical algorithm that solves SEARCH with bounded probab-
ility must query f∗ at least Ω(N) times.

Now we can prove the reduction of STO to standard search:

I Lemma 9. Any randomized classical algorithm that solves STO with bounded probability
of error must use as least Ω(N) queries to either f∗ or fS, as long as M/N ≤ 1/9.

Proof. Suppose there is a randomized algorithm A that solves STO with probability 3/4
and makes q∗ queries to f∗ and qS queries to fS . Then we will use A to find i∗ in the case
when we are given f∗ but not fS . To do this, we will use f∗ to create a function that behaves
similarly to fS . We choose a subset T ∈ [N ] with |T | = M − 1 at random, and create a
function fT that acts as

fT (i) =
{

1 if i ∈ T
0 if i /∈ T.

(39)

Then we create the function f̃S to simulate fS , where

f̃S(i) = fT (i) ∨ f∗(i). (40)

Each time we want to query f̃S , we must query f∗(i). Notice that f̃S behaves like a valid fS
function unless i∗ exists and i∗ ∈ T (because in this case f̃S marks M − 1 items instead of
M .) i∗ ∈ T with probability M−1

N.

We create f̃S as above, and we implement A, but every time A asks us to apply fS , we
instead apply f̃S . This new algorithm will succeed with probability 3/4(1−(M−1)/N) ≥ 2/3,
because it succeeds with probability 3/4 as long as i∗ /∈ F . This means we have created
an algorithm for standard search which uses q∗ + qS queries to f∗ and which succeeds with
probability 2/3. But by Lemma 8, we must have q∗ + qS = Ω(N). J

Finally, we note that there is an additional restriction on the number of queries to f∗:

I Lemma 10. Any randomized classical algorithm that solves STO with bounded probability
must use at least Ω(M) queries to f∗.

Proof. Suppose the elements of the subset S were known. Then in the worst case, that
would still only narrow down the search to M items. (This is the worst case because if
|S| 6= M , then one immediately knows there is no marked item.) One must then perform a
search for one marked item out of M , which requires Ω(M) queries via Lemma 8. J

Now we can state our lower bound on the query cost of STO:

I Theorem 11. The bounded error classical randomized cost complexity of STO is

RCC(STO) = min {Ω(cSN + c∗M),Ω(c∗N)} . (41)

Proof. When M/N ≤ 1/9, we solve the following linear program:

minimize: q∗c∗ + qScS

subject to: q∗ ≥ f1(M, ε)
q∗ + qS ≥ f2(N,M, ε). (42)

When M/N > 1/9, from Lemma 10, we have have q∗ = Ω(M) = Ω(N), so the cost is as
least Ω(c∗M) = Ω(c∗N). J

Comparing Eq. (41) with Eq. (20), we see that there is always a separation between
the quantum and classical costs of STO. In particular, to get the quantum scaling from the
classical scaling, simply replace all M ’s and N ’s by

√
M and

√
N .
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6 Conclusions and Open Questions

While query complexity is a well understood and powerful tool for quantifying the power
of quantum computers, there are still problems that are not easily characterized by query
complexity. Cost complexity is one way of extending the standard query model, and we’ve
argued that this approach has potential applications in constraint satisfaction problems.

While we motivated STO with problems like k-SAT, graph isomorphism, and the traveling
salesman problem, it is not obvious how much of a speed-up an STO inspired algorithm for
these problems would be. The speed-up in STO depends critically on N, M, c∗, and cs. It
would be interesting to calculate approximately what this relationship is, for example, in a
random k-SAT instance. Once this relationship is better understood, we could determine the
amount of speed-up an STO algorithm would give for such a problem. However, even with a
better understanding of this relationship, it is unlikely that M would be known exactly. In
that case, a method such as fixed point search [16] might be helpful.

STO is a very simple extension of a search problem, and thus the methods described here
all have a Grover-ish flavor to them. It would be interesting to find well motivated problems
for the cost complexity model where other quantum algorithms could be employed.

We have also left open the question of the exact cost of STO. We believe our algorithm is
optimal, but it seems new techniques are needed to prove it.
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A Analysis of the Hybrid Algorithm

Throughout this section, when we are calculating something “to zeroth order”, we drop terms
whose sizes are O(M−1/2) or O((M/N)1/4) multiplied by the size of the largest term.

In Section 3, Eq. (24), we showed that the cost of the Hybrid Algorithm is

Cost(Hybrid) =


arcsin

√
1− ε− arcsin

√
1−α√
M

2 arcsin
√

1−α√
M


×

c∗ + 2cS


(

arcsin
√

1− α− arcsin
√

M
N

)
2 arcsin

√
M
N


 . (43)

In this appendix, we prove that in the limit of M →∞ and N/M →∞, there is a choice of
α such that the cost is

Cost(Hybrid) = cS
√
N arcsin

√
1− ε

2 sec
(
φopt +

√
M

N

)
, (44)

where φopt is given by

φopt = max

0
φ : tan

(
φ+

√
M
N

)
= φ+ c∗

cS

√
M
N .

(45)

We first define

t =


(

arcsin
√

1− α− arcsin
√

M
N

)
2 arcsin

√
M
N

 , (46)

so t is a non-negative integer. Substituting t for α in Eq. (43), we obtain

Cost(Hybrid) =(2tcS + c∗)

×

arcsin
√

1− ε

2 arcsin

 sin
(

(2t+ 1) arcsin
√

M
N

)
√
M



−1

− 1/2

 .
(47)
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To zeroth order, this becomes

Cost(Hybrid) = (2tcS + c∗)
√
M arcsin

√
1− ε

2 sin
(

(2t+ 1)
√

M
N

) . (48)

Finally, we denote φ = 2t
√
M/N to obtain

Cost(Hybrid) =

(
φcS +

√
M
N c∗

)√
N arcsin

√
1− ε

2 sin
(
φ+

√
M
N

) . (49)

We take the partial derivative of the cost with respect to φ, and set it to zero to find the
value of φ that gives the smallest cost. We find the cost is minimized when φ = φopt, where
φopt satisfies

tan
(
φopt +

√
M/N

)
= φopt + c∗

c

√
M/N. (50)

Notice that there is always a solution with φopt ∈ [−
√
M/N, π/2]. However t is non-negative,

so if φopt < 0 we set φopt = 0. This condition, along with Eq. (49) and Eq. (50), immediately
gives the cost claimed in Eq. (44).

We might not be able to exactly attain this cost, because t must be an integer, so we
might only be able to set φ close to φopt. We show that even if we can’t set φ exactly to
φopt, we can still attain the cost of Eq. (44), to zeroth order.

There are two cases to consider. In the first case, we assume (M/N)1/4 ≤ φopt ≤ π/2. We
require that t be a non-negative integer, so we choose t =

⌈
(φopt

√
N)/(2

√
M)
⌉
, and hence

we set

φ =
⌈
φopt

2

√
N

M

⌉
2
√
M

N
. (51)

For that choice, notice that

φ− φopt = O
(

(M/N)1/2
)
. (52)

This allows us to relate terms involving φ to those involving φ0:

sin
(
φ+

√
M/N

)
= sin

(
φopt +

√
M/N

)
±O((M/N)1/2)

= sin
(
φopt +

√
M/N

)(
1±O((M/N)1/4)

)
=
(
φopt + c∗

cS

√
M/N

)
cos
(
φopt +

√
M/N

)(
1±O

(
(M/N)1/4

))
=
(
φ+ c∗

cS

√
M/N

)
cos
(
φopt +

√
M/N

)(
1±O

(
(M/N)1/4

))
,

(53)

where in the first line, we use the angle addition formula and Eq. (52); in the second, we
use the assumption that φopt ≥ (M/N)1/4; in the third line we applied Eq. (50); and in the
last we have used Eq. (52) and the assumption on the size of φopt. Plugging Eq. (53) into
our expression for the cost in Eq. (49), we have that to zeroth order, we obtain Eq. (44), as
desired.
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We now consider the second case, when 0 ≤ φopt < (M/N)1/4. In this case, we simply
set t = 0, and hence φ = 0. Plugging φ = 0 the cost of Eq. (49), we have, to zeroth order,

Cost(Hybrid) = arcsin
√

1− ε
√
N

2 c∗. (54)

We will show that Eq. (54) and Eq. (44) are equivalent for 0 ≤ φopt < (M/N)1/4. We have

sec
(
φopt +

√
M/N

)
= 1 +O

(
(M/N)1/4

)
. (55)

We can expand Eq. (50) to get

cS = c∗

(
1−O

(
(M/N)1/4)

))
. (56)

Plugging Eqs. (55) and (56) into Eq. (44) and keeping only zeroth order terms, we recover
Eq. (54).

B Proof of Theorem 6

In this section, we prove the following theorem:

I Theorem 6 (Exact Lower Bound). The cost of every Grover-like algorithm for STO that
succeeds with probability at least 1− ε for a constant ε is at least

cS
√
N arcsin

√
1− ε

2 sec
(
φopt +

√
M/N

)
, (32)

where φopt satisfies

φopt = max

0,
φ : tan

(
φ+

√
M
N

)
= φ+ c∗

cS

√
M
N .

(33)

We also require the conditions M,N/M →∞ and C → 0, where

C ≡ cS
√
N

c∗
√
ε2M cos

(
φopt +

√
M/N

) . (34)

Proof. Throughout this section, when we say to zeroth order, we mean dropping terms of
size at most O(M−1/2) or O

(
(M/N)1/2) or O(C) of the zeroth order terms.

Since we only consider the operations OS , O∗, and G, the state of the system never leaves
the three-dimensional space spanned by the orthonormal states{

|i∗〉, |S−〉 = 1√
M−1

∑
i∈S−{i∗} |i〉, |S

⊥〉 = 1√
N−M

∑
i/∈S |i〉

}
. (57)

It turns out that it is more convenient to work in a slightly shifted basis from that of Eq.
(57). We instead use the orthonormal basis states:

|x〉 = cos θ0|i∗〉 − sin θ0|S−〉,
|y〉 = cosφ0 sin θ0|i∗〉+ cosφ0 cos θ0|S−〉 − sinφ0|S⊥〉,
|z〉 = sinφ0 sin θ0|i∗〉+ cos θ0 sinφ0|S−〉+ cosφ0|S⊥〉

= |N〉. (58)
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We can think of these states as forming the axes of a 3-dimensional space, where a state

|χ〉 = x|x〉+ y|y〉+ z|z〉 (59)

is identified with the point (x, y, z). Then if the algorithm is initialized in the equal
superposition state |z〉, the goal of the algorithm is to move from the |z〉-axis towards the
|x〉-axis.

Since any normalized state of the system corresponds to a point on the unit sphere in this
space, let us now introduce polar coordinates, with the |x〉-axis as the polar axis. Specifically,
we associate the state |χ〉 with the polar coordinates (θ, φ), where

x = sin θ, y = cos θ sinφ, z = cos θ cosφ (60)

for θ ∈ [−π/2, π/2]. (The variable φ in this section plays a nearly identical role to φ in
Appendix A, so we use the same variable name.)

If we multiply a state by −1, this transforms the coordinates from (θ, φ) to (−θ, φ+ π).
Because overall phases do not affect the state, we can apply this transformation for free. In
particular, we use it to “pick a gauge” and choose the coordinates that satisfy θ ≥ 0.

For a Grover-like algorithm which finds the marked state with high success probability,
the algorithm starts at the point (θ = 0, φ = 0), and must end near θ = π/2. We define a
progress function H(θ, φ), for θ > 0, as

H(θ, φ) = θ − kmin
`∈Z
|φ+ 2`π − π/2|, (61)

where

k = θ0 cos(φopt + φ0), (62)

φ0 = arcsin
√
M/N, (63)

θ0 = arcsin
√

1/M, (64)

φopt = max
{

0
φ : tan(φ+ φ0) = φ+ c∗

c φ0.
(65)

The second term of H(θ, φ) is proportional to the angular distance of φ to π/2 (taken so the
distance is < π).

Before we analyze how each unitary changes the progress function, we will look at the
total progress that must occur for the algorithm to succeed. The total progress gained by
the algorithm must be larger than the difference between the value of the progress function
at the starting point and the end point. We pick the starting point as the last time the
algorithm increases θ from less than 2θ0 to more than 2θ0, and φ ≥ 0. (We require φ ≥ 0 for
Lemma 12, and we require θ ≥ 2θ0 in order to calculate the progress due to O∗.) We will
show later that such a point will always exist for any successful algorithm, and also that at
such a point θ < 6θ0. Thus the value of the progress function at the starting point is at most
6θ0.

For the end point of the algorithm, note that the probability of success is

sin2(θ) > 1− ε, (66)

to zeroth order. Thus the total change in progress function is at least

arcsin
√

1− ε− kπ − 6θ0 > arcsin
√

1− ε− (6 + π)θ0, (67)
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where we bound k using Eq. (62), and the kπ term comes from the worst possible value of φ
when θ gets sufficiently large.

We note the following: from Eq. (25) and Eq. (62) we see that the cost of the optimal
algorithm is at most

cS arcsin
√

1− ε
φ0k

, (68)

and from Eq. (67) the change in the progress function is at least arcsin
√

1− ε− (6 + π)θ0;
therefore the progress per unit cost must be at least φ0k/cS , to zeroth order. It therefore
follows that when calculating the change in progress function, we only need to keep track of
terms up to order O(φ0k/cS) per cost. For example, for O∗, we need only keep track of the
change in progress (not progress per cost) up to order O(φ0kc∗/cS).

The change in the progress function H(θ, φ) due to the unitaries G, OS , and O∗ can be
calculated by how they change the coordinates (θ, φ) of a state. After some algebra and
using our gauge choice, we obtain

G: The unitary G is a reflection about the z-axis, and in polar coordinates is the map

G : (θ, φ)→ (θ, π − φ). (69)

Comparing with Eq. (61), we see G has no effect on the progress function.
OS : The oracle OS is a reflection about the state which has polar coordinates (θ = 0, φ =
−φ0).

OS : (θ, φ)→ (θ, π − φ− 2φ0) (70)

We see that OS can change the progress function by at most 2φ0k. Thus the increase in
the progress function per cost due to OS is at most

2φ0k

cS
= 2φ0θ0 cos(φopt + φ0)

cS
. (71)

O∗: The oracle O∗ is a reflection about the state |i∗〉, which is close to |x〉. We find O∗
transforms coordinates as

θ → θ + 2θ0 sin(φ+ φ0) +O(θ2
0) (72)

φ→ π + φ+O

(
θ0

cos θ

)
. (73)

Now we consider how O∗ affects the progress function; unlike the previous cases, which
we calculated exactly, we will only analyze this case to zeroth order. We will first show that
we can assume |φ| ≤ π/2. Suppose that |φ| > π/2 just before we would like to apply O∗.
Then instead of applying O∗, we apply GO∗G. One can check that with this replacement,
when O∗ is applied, |φ| ≤ π/2. Furthermore one can verify that this replacement causes θ to
increase (which can only be good for the progress function), while on the other hand, the
value of φ changes by at most O (θ0/ cos θ) due to this replacement, resulting in a change
in the progress function of size O (kθ0/

√
ε) (using Eq. (66) to bound cos θ). Using our

assumption that that C = o(1), this change has order less than O(φ0kc∗/cS), and so can be
discarded using the argument following Eq. (68). We can therefore assume that O∗ is always
applied at |φ| ≤ π/2.
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Now we can examine the change in the progress function due to the action of O∗. The
increase in the progress function is

2θ0 sin(φ+ φ0) +O
(
θ2

0
)

− k
(

min
`∈Z
| − φ+ 2`π − π/2| −min

`∈Z
|φ+ 2`π − π/2|

)
+O

(
kθ0

cos θ

)
. (74)

Since |φ| ≤ π/2, the increase in the progress function due to O∗ is less than

2θ0 sin(φ+ φ0)− 2φθ0 cos(φopt + φ0) +O

(
θ2

0√
ε

)
, (75)

where we have used the value of k from Eq. (62) and bounded cos θ with Eq. (66).
Taking the first and second derivatives of Eq. (75) with respect to φ, we see that when

φ ≥ 0, the increase in the progress function is maximized when φ = φopt. It turns out that
if one applies O∗ at φ < 0, it is sometimes possible to achieve a larger increase in progress
per cost than when φ ≥ 0. However, we show at the end of this section, (Lemma 12), that
applying O∗ when φ < 0 will always be less efficient (up to higher order terms) in terms of
the increase in progress function per cost, than applying O∗ at φ = φopt, when viewed in the
context of the larger algorithm. Applying the definition of φopt from Eq. (65) to Eq. (75),
and using the definition of C from Eq. (34), the increase in the progress function due to O∗
is less than

c∗2φ0θ0 cos(φopt + φ0)
cS

(
1 +O(φ2

0) +O (C)
)
, (76)

where the O(φ2
0) term accounts for the case that φopt = 0.

From Eq. (71) and Eq. (76) we see that (to zeroth order) the maximum increase in the
progress function per cost is the same whether O∗ is applied or OS is applied. Dividing the
total necessary change in progress (Eq. (67)) by the maximum change in progress per cost
(Eq. (76)) gives us the minimum cost:

arcsin
√

1− ε cS
2φ0θ0 cos(φopt + φ0)

(
1−O(C)−O(M−1/2)−O

(
(M/N)−1/2

))
. (77)

In the limit of N,M →∞ and C → 0, (to zeroth order) we have that the cost is at least

arcsin
√

1− ε cS
√
M

2φ0 cos(φopt + φ0) , (78)

which matches the cost of Eq. (25).
We now justify why the value of the progress function must be less than 6θ0 when we start

tracking it. Immediately before we start tracking the progress function, we have θ < 2θ0, so
the bound on the increase in progress given by Eq. (75) does not necessarily apply. However,
it is simple to show that the increase in the progress function due to O∗ is always bounded
by 2θ0, where we have dropped terms of O(θ2

0/
√
ε) as before. Thus if θ < 2θ0, and then O∗

is applied, θ can increase by at most 2θ0, and so the new value of θ satisfies θ < 4θ0. At this
point, θ > 2θ0, but φ might be negative. Notice that θ can not increase unless O∗ is applied,
(and θ must increase in order to obtain a high probability of success) but O∗ flips the sign of
φ, so after applying O∗ at most one more time, we will have both the conditions θ > 2θ0
and φ ≥ 0 satisfied, at which point we start tracking the progress function. This tells us that
the value of θ will be at most 6θ0 when we start tracking the progress function. J
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I Lemma 12. Suppose there is an algorithm than applies O∗ when φ < 0. Then there is
always an alternative algorithm that achieves the same or greater increase in progress for the
same or less cost (up to zeroth order), but applies O∗ only when φ ≥ 0.

Proof. We begin by classifying the the possible sequences of O∗, OS , and G the algorithm
can take. We will use notation such that unitaries act from right to left, so GO∗ signifies O∗
acts first, and then G acts.

First look at O∗. We can always assume O∗ is followed by a G; if it is not, insert a GG
pair after the O∗. Note in the discussion following Eq. (73), we proved that we can assume
|φ| < π/2 before applying O∗. With Eqs. (69) and (73) we have

GO∗ : φ→ −φ+O

(
θ0

cos θ

)
. (79)

Since |φ| < π
2 before GO∗ acts, we also have |φ| < π

2 after GO∗ acts, up to an additive factor
of O

(
θ0

cos θ
)
, which we can ignore thanks to the discussion following Eq. (68). Therefore GO∗

maps φ inside the |φ| < π
2 region.

In between applications of GO∗, there is always a sequence of one of the following forms:

(GOS)m, G(GOS)m, (OSG)m, or G(OSG)m, (80)

where m is a non-negative integer that indicates multiple applications of the unitary sequence
inside the parenthesis. These are the only possible sequences because OSOS = I and GG = I.
Combining the action of G and OS in Eqs. (69) and (70) we get

(OSG)m : (θ, φ)→ (θ, φ− 2mφ0) (81)
(GOS)m : (θ, φ)→ (θ, φ+ 2mφ0). (82)

Thus the 4 sequences of Eq. (80) rotate φ by some amount ±2mφ0, possibly followed by the
transformation φ→ π − φ.

Now we focus on the algorithm’s action on φ. Since the GO∗’s are mapping φ between
points inside the |φ| < π

2 region, the four possible sequences of alternating G and OS in
Eq (80) just connect the value of φ after applying GO∗ to the value of φ before the next
application of GO∗. Generalizing Figure 3, one can see that the shortest path uses either
(GOS)m or (OSG)m to connect points inside the |φ| < π

2 region. Therefore we do not need
to consider the sequences G(OSG)m or G(GOS)m.

Next, we show that if one initially has φ > 0, it is never advantageous to again apply
GO∗ when φ < 0. Since the algorithm must consist of applications of GO∗ separated by
sequences of either (OSG)m or (GOS)m, we can enumerate and address the three possible
cases that lead us to apply O∗ at some φ = φneg < 0 after initially having φ ≥ 0. The three
possible cases are laid out graphically in Figure 4. In order to prove that none of the cases
are optimal, we define the function

p∗(φ) = 2(θ0 sin(φ+ φ0)− kφ) (83)

as the change in progress function due to an application of O∗, dropping higher order terms.
Note for φ ≥ 0, φopt optimizes Eq. (83) as discussed after Eq. (75). We proceed to treat the
three cases.
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Figure 3 The path in the figure at left uses a sequence (GOS)m to move from φstart to φend,
whereas the path in figure at right uses a sequence G(OSG)m. The path using (GOS)m is shorter,
signifying that fewer uses of OS are required to move from φstart to φend, and thus this is the more
efficient path.

Sequence I. We consider the following sequence of operations (see Figure 4):
(i) Start with φi > 0. Then apply GO∗ to get to −φi.
(ii) Apply (GOS) some number of times to increase φ to φneg > −φi.
(iii) Apply GO∗ to get to −φneg < φi.

The change in progress due only to O∗ in this sequence is

p∗(φi) + p∗(φneg) = 2(θ0 sin(φi + φ0)− kφi)
+ 2(θ0 sin(φneg + φ0)− kφneg)

≤ 4[θ0 sin(φi + φneg
2 + φ0)− kφneg + φi

2 ]

= 2p∗(φi + φneg)
≤ 2p∗(φopt), (84)

Since φneg + φi ≥ 0, the average progress due to the two applications of O∗ is worse than
if we had applied O∗ at φopt both times. Thus this sequence cannot be optimal.

Sequence II. We consider the following sequence of operations (see Figure 4):
(i) Start with φi > 0. Then apply GO∗ to get to −φi.
(ii) Apply (OSG) some number of times to decrease φ to φneg < −φi.
(iii) Apply GO∗ to get to −φneg > φi.
Compare Sequence II to the following Sequence 2:
(a) Start with φi > 0. Then apply (GOS) some number of times to increase φ to
−φneg > φi.

The difference in progress between Sequence II and Sequence 2 is

(2θ0 sin(φi + φ0) + 2θ0 sin(φneg + φ0))

=4θ0 sin(φi + φneg
2 + φ0) cos(φi − φneg2 )

<4θ0 sinφ0, (85)

since −π4 <
φi+φneg

2 < 0 and 0 < φi−φneg
2 < π

2 . Sequence II and Sequence 2 both use the
same number of applications of OS (in steps (ii) and (a) respectively). Therefore, the
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Sequence II has an additional cost 2c∗ while it only has an added increase in progress of

4θ0 sinφ0 =2p∗(0)
≤2p∗(φopt). (86)

Therefore Sequence II does not attain the increase in progress per cost that one could
attain by only applying O∗ at φopt.

Sequence III. We consider the following sequence of operations (see Figure 4):
(i) Start with φi ≥ 0, then apply (OSG) some number of times to decrease φ to

φneg < 0.
(ii) Apply GO∗ to get to −φneg.
Compare Sequence III to the following Sequence 3:
(a) Start with φi ≥ 0, and then apply (OSG) some number of times to decrease φ to

φw such that 2φ0 > φw ≥ 0.
(b) Apply GO∗ to get to −φw.
(c) Apply (GOS) some number of times to increase φ to −φneg > 0.
Note that we can always create a sequence with such a φw because (OSG) changes φ by
at most 2φ0 each time. The cost of Sequence III is the same as the cost of Sequence 3.
The difference in progress between Sequence III and Sequence 3 is

2θ0 sin(φneg + φ0)− 2θ0 sin(φw + φ0)

≤4θ0 cos
(
φneg + φw

2 + φ0

)
sin
(
φneg − φw

2

)
<0 (87)

since |φneg+φw
2 + φ0| < π

2 and π
2 <

φneg−φw
2 < 0. Therefore Sequence III is not optimal

either.

Hence we conclude that applying O∗ at negative φ never achieves as much increase in
progress per cost as applying O∗ at φopt, and therefore we only need to consider applying
O∗ at positive φ, at φopt. J

C An Adversary Lower Bound

In this section, we will show how to apply the adversary method to the problem of cost
complexity of STO.

Suppose we are given access to an oracle O∗, which implements the function f∗, and an
oracle OS , which implements the function fS . Then any algorithm which solves STO using
these oracles, after t steps, produces a state

|ψtf∗,fS 〉 = U tOct · · ·U2Oc2U
1Oc1 |ψ0〉, (88)

where cj ∈ {∗, S}, and U j are fixed unitaries independent of f∗ and fS .
We create an adversary matrix Γ, a matrix whose rows and columns are indexed by pairs

of functions (f∗, fS) ∈ DSTO, where DSTO is the set of valid inputs to STO. Furthermore,
we have the condition that that Γ[(f∗, fS), (g∗, gS)] = 0 if STO(f∗, fS) = STO(g∗, gS). With
this notation, we define the progress function:

W t =
∑

(f∗,fS),(g∗,gS)∈DSTO×DSTO

Γ(f∗,fS),(g∗,gS)vf∗,fSv
∗
g∗,gS 〈ψ

t
f∗,fS |ψ

t
g∗,gS 〉 (89)
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Figure 4 Possible paths that could lead to applying GO∗ at a negative value of φ, when initially,
φ has positive value.

for a vector v indexed by the elements of DSTO, such that ‖v‖ = 1 and v is an eigenvector
of Γ with eigenvalue ±‖Γ‖, (where ‖ · ‖ signifies the l-2 norm for vectors or the induced l-2
norm for matrices).

Then following [12]3, we have
1. W 0 = ‖Γ‖.
2. WT ≤

(
2
√
ε(1− ε) + 2ε

)
‖Γ‖, for any algorithm with probability of error at most ε.

3. W t−1 −W t ≤ 2 maxi ‖Γ ◦Dct
i ‖ where D

ct
i are |DSTO| × |DSTO| matrices satisfying

D∗i [(f∗, fS), (g∗, gS)] =
{

0 if f∗(i) = g∗(i),
1 otherwise,

DS
i [(f∗, fS), (g∗, gS)] =

{
0 if fS(i) = fS(i),
1 otherwise.

Thus if q∗ queries are made to O∗ and qS queries are made to OS , we have

‖Γ‖g(ε) ≤ q∗max
i
‖Γ ◦D∗i ‖+ qS max

i
‖Γ ◦DS

i ‖ (90)

3 The proofs are identical, so we omit them.
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where

g(ε) =
1−

(
2
√
ε(1− ε) + 2ε

)
2 . (91)

We construct the following adversary matrix for STO: Γ[(f∗, fS), (g∗, gS)] = 1 if one of
the following conditions holds:

STO(f∗, fS) = 1, STO(g∗, gS) = 0, and fS(i) = gS(i) except if f∗(i∗) = 1, then gS(i∗) = 0,
STO(g∗, gS) = 1, STO(f∗, fS) = 0, and gS(i) = fS(i) except if g∗(i∗) = 1, then fS(i∗) = 0.

Otherwise, Γ = 0.
One can calculate (or it is easy to see by analogy to a standard Grover search over

N −M + 1 items) that

‖Γ‖ =
√
N −M + 1,

max
i
‖Γ ◦Dct

i ‖ = 1,

max
i
‖Γ ◦DS

i ‖ = 1. (92)

Plugging into Eq. (90) we have

g(ε)
√
N −M + 1 ≤ q∗ + qS , (93)

so for N > M/2, we have

QCC(STO) = Ω(cS
√
N). (94)

We also consider a second adversary matrix for STO. Let Γ[(f∗, fS), (g∗, gS)] = 1 if one
of the following conditions holds:

STO(f∗, fS) = 1, STO(g∗, gS) = 0, and fS(i) = gS(i),
STO(g∗, gS) = 1, STO(f∗, fS) = 0, and gS(i) = fS(i).

Otherwise, Γ = 0.
In this case, the adversary matrix only pairs instances such that OS is the same in both

pairs. Thus it is as if the set S is known ahead of time. In this case, one can calculate (or it
is easy to see by analogy to a standard Grover search over M items), that

‖Γ‖ =
√
M

max
i
‖Γ ◦Djt

i ‖ = 1

max
i
‖Γ ◦DS

i ‖ = 0. (95)

Plugging into Eq. (90), we have

g(ε)
√
M ≤ q∗, (96)

so

QCC(STO) = Ω(c∗
√
M) (97)

Combining Eq. (94) and Eq. (97), we obtain a bound that matches Eq. (20):

QCC(STO) = Ω
(

max{c∗
√
M, cS

√
N}
)
. (98)
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