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—— Abstract

Inspired by the Elitzur-Vaidman bomb testing problem [19], we introduce a new query complexity
model, which we call bomb query complexity B(f). We investigate its relationship with the usual
quantum query complexity Q(f), and show that B(f) = ©(Q(f)?).

This result gives a new method to upper bound the quantum query complexity: we give a
method of finding bomb query algorithms from classical algorithms, which then provide noncon-
structive upper bounds on Q(f) = O(1/B(f)). We subsequently were able to give explicit quan-
tum algorithms matching our upper bound method. We apply this method on the single-source
shortest paths problem on unweighted graphs, obtaining an algorithm with O(n!-®) quantum
query complexity, improving the best known algorithm of O(n'®y/logn) [21]. Applying this
method to the maximum bipartite matching problem gives an O(n!-"®) algorithm, improving the
best known trivial O(n?) upper bound.
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1 Introduction

Quantum query complexity is an important method of understanding the power of quantum
computers. In this model we are given a black-box containing a boolean string x = =1 - - -z,
and we would like to calculate some function f(x) with as few quantum accesses to the black-
box as possible. It is often easier to give bounds on the query complexity than to the time
complexity of a problem, and insights from the former often prove useful in understanding
the power and limitations of quantum computers. One famous example is Grover’s algorithm
for unstructured search [22]; by casting this problem into the query model it was shown that
O(v/'N) queries was required [7], proving that Grover’s algorithm is optimal.

Several methods have been proposed to bound the quantum query complexity. Upper
bounds are almost always proven by finding better query algorithms. Some general methods
of constructing quantum algorithms have been proposed, such as quantum walks [3, 45, 34, 28]
and learning graphs [6]. For lower bounds, the main methods are the polynomial method [5]
and adversary method [2]. In particular, the general adversary lower bound [27] has been
shown to tightly characterize quantum query complexity [42, 43, 33], but calculating such a
tight bound seems difficult in general. Nevertheless, the general adversary lower bound is
valuable as a theoretical tool, for example in proving composition theorems [43, 33, 30] or
showing nonconstructive (!) upper bounds [30].
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Our work

To improve our understanding of quantum query complexity, we introduce and study an
alternative oracle model, which we call the bomb oracle (see Section 3 for the precise definition).
Our model is inspired by the concept of interaction free measurements, illustrated vividly
by the Elitzur-Vaidman bomb testing problem [19], in which a property of a system can
be measured without disturbing the system significantly. Like the quantum oracle model,
in the bomb oracle model we want to evaluate a function f(x) on a hidden boolean string
T = x1 - -+ xn while querying the oracle as few times as possible. In this model, however, the
bomb oracle is a controlled quantum oracle with the extra requirement that the algorithm
fails if the controlled query returns a 1. This seemingly impossible task can be tackled using
the quantum Zeno effect [36], in a fashion similar to the Elitzur-Vaidman bomb tester [32]
(Section 2.1).

Our main result (Theorem 4.1) is that the bomb query complexity, B(f), is characterized
by the square of the quantum query complexity Q(f):

» Theorem 4.1.

B(f) = 0(Q(f)*). (1)

We prove the upper bound, B(f) = O(Q(f)?) (Theorem 4.2), by adapting Kwiat et al’s
solution of the Elitzur-Vaidman bomb testing problem (Section 2.1, [32]) to our model. We
prove the lower bound, B(f) = Q(Q(f)?) (Theorem 4.3), by demonstrating that B(f) is lower
bounded by the square of the general adversary bound [27], (Adv™(f))2. The aforementioned
result that the general adversary bound tightly characterizes the quantum query complexity
[42, 43, 33], Q(f) = O(Advt(f)), allows us to draw our conclusion.

This characterization of Theorem 4.1 allows us to give nonconstructive upper bounds
to the quantum query complexity for some problems. For some functions f a bomb query
algorithm is easily designed by adapting a classical algorithm: specifically, we show that
(stated informally):

» Theorem 5.1 (informal). Suppose there is a classical algorithm that computes f(z) in
T queries, and the algorithm guesses the result of each query (0 or 1), making no more
than an expected G mistakes for all xz. Then we can design a bomb query algorithm that
uses O(TG) queries, and hence B(f) = O(TG). By our characterization of Theorem 4.1,
Q(f) = OWTG).

This result inspired us to look for an explicit quantum algorithm that reproduces the
query complexity O(vVTG). We were able to do so:

» Theorem 5.2. Under the assumptions of Theorem 5.1, there is an explicit algorithm
(Algorithm F.1) for f with query complexity O(VTQG).

Using Algorithm F.1, we were able to give an O(n3/2) algorithm for the single-source
shortest paths (SSSP) problem in an unweighted graph with n vertices, beating the best-
known O(n®/2\/Togn) algorithm [21]. A more striking application is our O(n7/4) algorithm
for maximum bipartite matching; in this case the best-known upper bound was the trivial
O(n?), although the time complexity of this problem had been studied in [4] (and similar
problems in [16]).

Finally, in Section 7 we briefly discuss a related query complexity model, which we call the
projective query complexity P(f), in which each quantum query to x is immediately followed
by a classical measurement of the query result. This model seems interesting to us because
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its power lies between classical and quantum: we observe that P(f) < B(f) = ©(Q(f)?) and
Q(f) < P(f) < R(f), where R(f) is the classical randomized query complexity. We note
that Regev and Schiff [41] showed that P(OR) = O(N).

Past and related work

Mitchison and Jozsa have proposed a different computational model called counterfactual
computation [37], also based on interaction-free measurement. In counterfactual computation
the result of a computation may be learnt without ever running the computer. There has
been some discussion on what constitutes counterfactual computation; see for example
[26, 38, 25, 46, 24, 44, 47].

There have also been other applications of interaction-free measurement to quantum
cryptography. For example, Noh has proposed counterfactual quantum cryptography [40],
where a secret key is distributed between parties, even though a particle carrying secret
information is not actually transmitted. More recently, Brodutch et al. proposed an adaptive
attack [11] on Wiesner’s quantum money scheme [48]; this attack is directly based off Kwiat
et al’s solution of the Elitzur-Vaidman bomb testing problem [32].

Our Algorithm F.1 is very similar to Kothari’s algorithm for the oracle identification
problem [31], and we refer to his analysis of the query complexity in our work.

The projective query model we detail in Section 7 was, to our knowledge, first considered
by Aaronson in unpublished work in 2002 [1].

Discussion and outlook

Our work raises a number of open questions. The most obvious ones are those pertaining
to the application of our recipe for turning classical algorithms into bomb algorithms,
Theorem 5.1:
Can we generalize our method to handle non-boolean input and output? If so, we might
be able to find better upper bounds for the adjacency-list model, or to study graph
problems with weighted edges.
Can our explicit (through Theorem 5.2) algorithm for maximum bipartite matching be
made more time efficient? The best known quantum algorithm for this task has time
complexity O(n?logn) in the adjacency matrix model [4].
Finally, can we find more upper bounds using Theorem 5.17 For example, could the
query complexity of the maximum matching problem on general nonbipartite graphs be
improved with Theorem 5.1, by analyzing the classical algorithm of Micali and Vazirani
[35]?

Perhaps more fundamental, however, is the possibility that the bomb query complexity

model will help us understand the relationship between the classical randomized query
complexity, R(f), and the quantum query complexity Q(f). It is known [5] that for all total
functions f, R(f) = O(Q(f)%); however, there is a long-standing conjecture that actually
R(f) = O(Q(f)?). In light of our results, this conjecture is equivalent to the conjecture that
R(f)=0(B
Can we say something about the relationship between R(f) and B(f) for specific classes
of functions? For example, is R(f) = O(B(f)?) for total functions?
Referring to the notation of Theorem 5.1, we have B(f) = O(TG). Is the quantity G
related to other measures used in the study of classical decision-tree complexity, for
example the certificate complexity, sensitivity [14], block sensitivity [39], or (exact or
approximate) polynomial degree? (For a review, see [12].)

f)
(B(f)). Some more open questions, then, are the following:
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What about other query complexity models that might help us understand the relationship
between R(f) and Q(f)? One possibility is the projective query complexity, P(f),
considered in Section 7. Regev and Schiff [41] have shown (as a special case of their
results) that even with such an oracle, P(OR) = ©(N) queries are needed to evaluate
the OR function.

We hope that further study on the relationship between bomb and classical randomized
complexity will shed light on the power and limitations of quantum computation.

2 Preliminaries

2.1 The Elitzur-Vaidman bomb testing problem

The Elitzur-Vaidman bomb testing problem [19] is a well-known thought experiment to
demonstrate the possibility of interaction free measurements, a measurement on a property
of a system without disturbing the system.

The bomb-testing problem is as follows: assume we have a bomb that is either a dud
or a live bomb. The only way to interact with the bomb is to probe it with a photon: if
the bomb is a dud, then the photon passes through unimpeded; if the bomb is live, then
the bomb explodes. We would like to determine whether the bomb is live or not without
exploding it. If we pass the photon through a beamsplitter before probing the bomb, we can
implement the controlled probe, pictured below:

[€) ) (2)
10) explodes if 1

The controlled gate is I if the bomb is a dud, and X if it is live. [32] shows how to
determine whether a bomb was live with arbitrarily low probability of explosion with the
following scheme: writing R(0) = exp(i6X), the following circuit determines whether the
bomb is live with failure probability O(0):

r- - - - - - - - - - - - - —~- -—_ - - - - - - - - - 1
o) —{RO}— R(O)F— i (3)
10 ) A

7/(20) times in total

If the bomb is a dud, then the controlled probes do nothing, and repeated application
of R(0) rotates the control bit from |0) to |1). If the bomb is live, the bomb explodes with
O(6?) probability in each application of the probe, projecting the control bit back to |0).
After O(1/0) iterations the control bit stays in |0), with only a O(f#) probability of explosion.
Using O(1/6) operations, we can thus tell a dud bomb apart from a live one with only O(6)
probability of explosion.

2.2 Quantum query complexity

Throughout this paper, all functions f which we would like to calculate are assumed to have
boolean input, i.e. the domain is D C {0,1}".

For a boolean string = € {0,1}V, the quantum oracle O, is a unitary operator that acts
on a one-qubit record register and an N-dimensional index register as follows (& is the XOR
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function):
Oglryi) = |r @ x;,1) (4)
r) — — |7 x;
| .> 0. |’ )
i) — = 1d)

The quantum query complexity Qs(f) is the minimum number of applications of O,’s in
the circuit required to determine f(z) with error no more than ¢ for all x. Since J can be
amplified by majority voting, the choice of ¢ only affects the query complexity by a log(1/6)
factor. We therefore often set 6 = 0.01 and write Qo.01(f) as Q(f).

3 Bomb query complexity

In this section we introduce a new query complexity model, which we call the bomb query

complexity. A circuit in the bomb query model is a restricted quantum query circuit, with

the following restrictions on the usage of the quantum oracle:

1. We have an extra control register |¢) used to control whether O, is applied (we call the
controlled version CO,):

COyle,r,i) = e, @ (¢ 4),19). (5)

where - indicates boolean AND.

2. The record register, |r) in the definition of CO, above, must contain |0) before CO, is
applied.

3. After CO, is applied, the record register is immediately measured in the computational
basis (giving the answer ¢ - z;), and the algorithm terminates immediately if a 1 is
measured (if ¢- x; = 1). We refer to this as the bomb blowing up or the bomb exploding.

o) —¢ 2 ()
|0) — = bomb) explodesifc-z; =1
Oy
i) 4 1)

We define the bomb query complexity Be s(f) to be the minimum number of times the
above circuit needs to be applied in an algorithm such that the following hold for all input x:

The algorithm reaches the end without the bomb exploding with probability at least

1 — €. We refer to the probability that the bomb explodes as the probability of explosion.

The total probability that the bomb either explodes or fails to output f(z) correctly is

no more than § > e.

The above implies that the algorithm outputs the correct answer with probability at least
1-9.

We often set § = 0.01, and write simply Be(f) = Beo.01(f). Sometimes we will even omit
the e.

We will continue our discussion of the bomb query complexity in Appendix A. Note also
that the definition of the bomb query complexity is inherently asymmetric with respect to 0
and 1 in the input, since the bomb explodes only on a 1. We will define a symmetric variant
in Appendix A.2, although the proof that this variant is equivalent requires our main result,
Theorem 4.1.
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4 Main result

Our main result is the following:

» Theorem 4.1. For all functions f with boolean input alphabet, and numbers € satisfying
0 <e<0.01,

Beooi(f) = © <Q°°1(f)2) . (7)

€
Here 0.01 can be replaced by any constant no more than 1/10.

Proof. The upper bound B, 5(f) = O(Qs(f)?/e) is proved in Theorem 4.2. The lower bound
Bes(f) = Q(Qo.01(f)?/¢) is proved in Theorem 4.3. <

4.1 Upper bound

» Theorem 4.2. For all functions f with boolean input alphabet, and numbers e, § satisfying
0<e<éd<1/10,

Bes(f) = 0(Qs(f)*/e)- (8)

The proof follows the solution of Elitzur-Vaidman bomb-testing problem ([32], or Section
2.1). By taking advantage of the Quantum Zeno effect [36], using O(@) calls to M, we
can simulate one call to O, with probability of explosion O(ﬁ) Replacing all O, queries
with this construction results in a bounded error algorithm with probability of explosion
05 Q(f)) = O(e).

The complete proof is given in Appendix B.

4.2 Lower bound

» Theorem 4.3. For all functions f with boolean input alphabet, and numbers ¢, § satisfying
0<e<d<1/10,

Bes(f) = Q(Qo.01(f)2/€)~ 9)

The proof of this result uses the generalized adversary bound Adv®(f) [27]: we show
that B.(f) = Q(Adv™(f)?/e), and then use the known result that Q(f) = O(Adv™(f)) [33].
The complete proof is given in Appendix C.

5 A general quantum algorithm inspired by B(f)

5.1 Using classical algorithms to design bomb query algorithms

We show nonconstructive upper bounds on Q(f) for some functions f, by creating bomb
query algorithms and using that Q(f) = ©(y/eB(f)), as the following theorem:

» Theorem 5.1. Let f : D — E, where D C {0,1}V. Suppose there is a classical randomized
query algorithm A, that makes at most T queries, and evaluates f with bounded error. Let
the query results of A on random seed s be Tp,, Tp,, - s Tpiiay s T(m) < T, where x is the
hidden query string.

Suppose there is another (not necessarily time-efficient) randomized algorithm G, with
random seed sg, which takes as input xp,,- - ,&p,_, and s4, and outputs a guess for the next
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query result x,, of A. Assume that G makes no more than an expected total of G mistakes
(for all inputs ). In other words,

Es 456 Z |g<xm7"' ,.Z'pFNSA,Sg) _Ipt| <G V. (10)
t=1

Note that G is given the random seed s of A, so it can predict the next query indez of A.
Then B.(f) = O(TG/¢), and thus (by Theorem 4.1) Q(f) = O(VTG).

As an example, take f to be the OR function. One can easily find a classical algorithm
with T'= N (the algorithm takes at most N queries) and G = 1 (the guessing algorithm
always guesses the next query to be 0; since the algorithm terminates on a 1, it makes at
most one mistake).

The proof idea is as follows: we take the classical algorithm and replace each classical
query by the construction of Theorem 4.2 (see Eq. 29), using O(G/e) bomb queries each
time. On each query, the bomb has a O(e/G) chance of exploding when the guess is wrong,
and no chance of exploding when the guess is correct. Therefore the total probability of
explosion is O(e/G) - G = O(e). The total number of bomb queries used is O(T'G/e).

For the full technical proof, see Appendix D.

5.2 Explicit quantum algorithm for Theorem 5.1

In this section we give an explicit quantum algorithm, in the setting of Theorem 5.1, that

reproduces the given query complexity. This algorithm is very similar to the one given by R.

Kothari for the oracle identification problem [31].

» Theorem 5.2. Under the assumptions of Theorem 5.1, there is an explicit quantum
algorithm for f with query complezity O(VTGQG).

Proof. The explicit algorithm (Algorithm F.1) is given in Appendix F; we will give a high-level
description shortly. We need the following quantum search algorithm as a subroutine:

» Theorem 5.3 (Finding the first marked element in a list). Suppose there is an ordered list of
N elements, and each element is either marked or unmarked. Then there is a bounded-error
quantum algorithm for finding the first marked element in the list (or determines that no
marked elements exist), such that:
If the first marked element is the d-th element of the list, then the algorithm uses an
expected O(\/d) time and queries.
If there are no marked elements, then the algorithm uses O(\/N) time and queries, but
always determines correctly that no marked elements exist.

This algorithm is straightforward to derive given the result in [18], and was already
used in Kothari’s algorithm [31]. We give the algorithm (Algorithm E.2) and its analysis in
Appendix E.

We now describe our explicit quantum algorithm (Algorithm F.1 in Appendix F). The

main idea for the algorithm is this: we first assume that the guesses made by G are correct.

By repeatedly feeding the output of G back into A and G, we can obtain a list of query values
for A without any queries to the actual black box. We then search for the first deviation of
the string x from the predictions of G; assuming the first deviation is the d;-th query, by
Theorem 5.3 the search takes O(v/d;) queries (ignoring error for now). We then know that
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all the guesses made by G are correct up to the (d; — 1)-th query, and incorrect for the d;-th
query.

With the corrected result of the first di queries, we now continue by assuming again
the guesses made by G are correct starting from the (d; + 1)-th query, and search for the
location of the next deviation, dp. This takes O(y/dy — d;) queries; we then know that all
the guesses made by G are correct from the (dy + 1)-th to (d2 — 1)-th query, and incorrect
for the ds-th one. Continuing in this manner, we eventually determine all query results of A
after an expected G iterations. The expected number of queries is

0 <§; m) -0 (VTG) (11)

by the Cauchy-Schwarz inequality.! <

Note that while Algorithm F.1 has query complexity O(v/TG), the time complexity may
be much higher. After all, Algorithm F.1 proceeds by simulating A query-by-query, although
the number of actual queries to the oracle is smaller. Whether or not we can get a algorithm
faster than A4 using this approach may depend on the problem at hand.

6 Improved upper bounds on quantum query complexity

We now use Theorem 5.2 to improve the quantum query complexity of certain graph problems.

6.1 Single source shortest paths for unweighted graphs

» Problem 6.1 (Single source shortest paths (SSSP) for unweighted graphs). The adjacency
matrix of a directed graph n-vertex graph G is provided as a black box. Given a fixed vertex

Vstart, OUr task is to find the lengths of the shortest paths from wvg;q.+ to all other vertices w
in G.

» Theorem 6.2. The quantum query complexity of single-source shortest paths in an un-
weighted graph is ©(n3/?) in the adjacency matriz model.

Proof. The lower bound of Q(n?/?) is known [17]. We show the upper bound by applying
Theorem 5.2 to the breadth-first search (BFS) algorithm. Although 7' = O(n?) queries are
required for BFS in the worst case, if we always guess that (v, w) is not an edge, then the
algorithm only needs to make G = n — 1 mistakes (find n — 1 actual edges) to construct the
BFS tree. Therefore Q(f) = O(VTG) = O(n?/?). <

The previous best known quantum algorithm for unweighted SSSP, to our best knowledge,
was given by Furrow [21]; that algorithm has query complexity O(n?/2y/Togn).

We now consider the quantum query complexity of unweighted k-source shortest paths
(finding k shortest-path trees rooted from k beginning vertices). If we apply BFS on k
different starting vertices, then the expected number of wrong guesses is no more than
G = k(n — 1); however, the total number of edges we query need not exceed T = O(n?),
since an edge never needs to be queried more than once. Therefore

L It may seem like we actually need an extra logarithmic factor in the query complexity to keep the total
error constant. However, Kothari showed [31] that multiple calls to Algorithm E.2 can be composed
without an extra logarithmic factor.
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» Corollary 6.3. The quantum query complexity of unweighted k-source shortest paths in the
adjacency matrix model is O(k1/2n3/2), where n is the number of vertices.

We use this idea — that T’ need not exceed O(n?) when dealing with graph problems — again
in the following section.

6.2 Maximum bipartite matching

» Problem 6.4 (Maximum bipartite matching). We are given as black box the adjacency
matrix of an n-vertex undirected bipartite graph G = (V = X UY, E). A matching of G is a
list of edges of G that do not share vertices. Our task is to find a maximum matching of G,
i.e. a matching that contains the largest possible number of edges.

» Theorem 6.5. The quantum query complexity of mazimum bipartite matching is O(n7/*)
in the adjacency matriz model, where n is the number of vertices.

The proof proceeds by analyzing the classical Hopcroft-Karp algorithm [23], which uses up
to O(y/n) iterations of modified breadth-first search and depth-first search. It will therefore
turn out that G = O(y/n - n) = O(n®/?); however, T = O(n?), since no edge needs to be
queried more than once. This gives Q = O(VTG) = O(n™/4).

We give the complete proof in Appendix G.

To our knowledge, this is the first known nontrivial upper bound on the query complexity
of maximum bipartite matching.? The time complexity of this problem was studied by
Ambainis and Spalek in [4]; they gave an upper bound of O(n?logn) time in the adjacency
matrix model. A lower bound of Q(n?/?) for the query complexity of this problem was given
in [9, 49].

For readers familiar with network flow, the arguments in this section also apply to Dinic’s
algorithm for maximum flow [15] on graphs with unit capacity, i.e. where the capacity of
each edge is 0 or 1. On graphs with unit capacity, Dinic’s algorithm is essentially the same
as Hopcroft-Karp’s, except that augmenting paths are over a general, nonbipartite flow
network. (The set S in Step 2(c) of Algorithm G.1 is generally referred to as a blocking
flow in this context.) It can be shown that only O(min{m!/2,n?/3}) iterations of Step
2 are required [29, 20], where m is the number of edges of the graph. Thus T = O(n?),
G = O(min{m!/2,n?/3}n), and therefore

» Theorem 6.6. The quantum query complexity of the maximum flow problem in graphs
with unit capacity is O(min{n>/2m'/* n11/61) where n and m are the number of vertices
and edges in the graph, respectively.

It is an open question whether a similar result for maximum matching in a general
nonbipartite graph can be proven, perhaps by applying Theorem 5.2 to the classical algorithm
of Micali and Vazirani [35].

7 Projective query complexity

We end this paper with a brief discussion on another query complexity model, which we
will call the projective query complexity. This model is similar to the bomb query model
in that the only way of accessing x; is through a classical measurement; however, in the

2 The trivial upper bound is O(nQ)7 where all pairs of vertices are queried.
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projective query model the algorithm does not terminate if a 1 is measured. Our motivation
for considering the projective query model is that its power is intermediate between the
classical and quantum query models. To the best of our knowledge, this model was first
considered in 2002 in unpublished results by S. Aaronson [1].
A circuit in the projective query complexity model is a restricted quantum query circuit,
with the following restrictions on the use of the quantum oracle:
1. We have an extra control register |c) used to control whether O, is applied (we call the
controlled version CO,):

COgle,r, ) = |e,r @ (¢ x5),1). (12)

where - indicates boolean AND.

2. The record register, |r) in the definition of CO, above, must contain |0) before CO, is
applied.

3. After CO, is applied, the record register is immediately measured in the computational
basis, giving the answer c¢ - x;. The result, a classical bit, can then be used to control
further quantum unitaries (although only controlling the next unitary is enough, since
the classical bit can be stored).

&) —4——— o) (13)
|0y — c-x;

OI
i) L ——[%)

We wish to evaluate a function f(z) with as few calls to this projective oracle as possible.
Let the number of oracle calls required to evaluate f(z), with at most ¢ error, be Ps(f). By
gap amplification, the choice of ¢ only affects Ps(f) by a factor of log(1/4), and thus we will
often omit 9.

We can compare the definition in this section with the definition of the bomb query
complexity in Section 3: the only difference is that if ¢ - z; = 1, the algorithm terminates in
the bomb model, while the algorithm can continue in the projective model. Therefore the
following is evident:

» Observation 7.1. Ps(f) < B.s(f), and therefore P(f) = O(Q(f)?).

Moreover, it is clear that the projective query model has power intermediate between
classical and quantum (a controlled query in the usual quantum query model can be simulated
by appending a 0 to the input string), and therefore letting Rs(f) be the classical randomized
query complexity,

» Observation 7.2. Q;(f) < Ps(f) < Rs(f).

For explicit bounds on P, Regev and Schiff [41] have shown that for computing the OR
function, the projective query complexity loses the Grover speedup:

> Theorem 7.3 ([41]). P(OR) = Q(N).

Note that this result says nothing about P(AN D), since the definition of P(f) is asymmetric
with respect to 0 and 1 in the input.?

3 We could have defined a symmetric version of P, say 15, by allowing an extra guess on the measurement
result, similar to our construction of B in Section A.2. Unfortunately, Regev and Schiff’s result, Theorem
7.3, do not apply to this case, and we see no obvious equivalence between P and P.
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We observe that there could be a separation in both parts of the inequality @ < P < B:

Q(OR) =©(VN), P(OR)=©(N), B(OR)=6(N)
Q(PARITY) = ©(N), P(PARITY)=0O(N), B(PARITY)=0(N?)

In the latter equation we used the fact that Q(PARITY) = O(N) [5]. It therefore seems
difficult to adapt our lower bound method in Section 4.2 to P(f).

It would be interesting to find a general lower bound for P(f), or to establish more clearly
the relationship between Q(f), P(f), and R(f).
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A A more detailed discussion of bomb query complexity

We will continue our discussion of bomb query complexity from Section 3, to provide further
intuition and also alternative characterizations that will be useful for the proofs contained in
this appendix.

A.1 Properties of the bomb query complexity

Recall that a circuit in the bomb query model has the following restrictions on the usage of
the quantum oracle:

1. We have an extra control register |¢) used to control whether O, is applied (we call the
controlled version CO,):

COyle,ry i) = |e,r @ (¢ x;),i). (14)

where - indicates boolean AND.
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2. The record register, |r) in the definition of CO, above, must contain |0) before CO, is
applied.

3. After CO, is applied, the record register is immediately measured in the computational
basis (giving the answer c¢ - x;), and the algorithm terminates immediately if a 1 is
measured (if ¢ - x; = 1). We refer to this as the bomb blowing up or the bomb exploding.

©) 1 |c) (15)

|0y — = bomb explodes if ¢-x; = 1
O,

We define the bomb query complexity Be s(f) to be the minimum number of times the
above circuit needs to be applied in an algorithm such that the following hold for all input x:
The algorithm reaches the end without the bomb exploding with probability at least
1 — e. We refer to the probability that the bomb explodes as the probability of explosion.
The total probability that the bomb either explodes or fails to output f(z) correctly is
no more than § > e.
The above implies that the algorithm outputs the correct answer with probability at least
1—0.
The effect of the above circuit is equivalent to applying the following projector on |c, 7):

N
M, =CPypo=>_0,i)(0,| + > [1,i)(1,il (16)
=1 .’Ei:O
=T-Y [1,i)(L,dl. (17)
x;=1

CP, o (which we will just call M, in our proofs later on) is the controlled version of P, g,
the projector that projects onto the indices ¢ on which z; = 0:

Poo= Y |i)il- (18)
z;=0

Thus Circuit 15 is equivalent to the following circuit :

[€) ) (19)
i) — Pro (1—c-;)li)

In this notation, the square of the norm of a state is the probability that the state has
survived to this stage, i.e. the algorithm has not terminated. The norm of (1 —c- x;)|z;) is 1
if ¢ - x; = 0 (the state survives this stage), and 0 otherwise (the bomb blows up).

A general circuit in this model looks like the following:

. . . - (20)

] P.’L’O PxO P.’L'O —

) ) )

UO U1 U2 U3

It is not at all clear that gap amplification can be done efficiently in the bomb query
model to improve the error ¢; after all, repeating the circuit multiple times increases the
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chance that the bomb blows up. However, it turns out that the complexity B s(f) is closely
related to Q;(f), and therefore the choice of § affects B. s5(f) by at most a log®(1/4) factor
as long as § > e (this follows from the main result, Theorem 4.1). We therefore often omit &
by setting § = 0.01, and write Be 0.01(f) as Be(f). Sometimes we even omit the e.

A.2 A symmetric variant of the bomb query complexity

Note that the definition of the bomb query complexity B(f) is inherently asymmetric with
respect to 0 and 1 in the input: querying 1 causes the bomb to blow up, while querying
0 is safe. We will now define a symmetric bomb query model and its corresponding query
complexity, Bes(f).
definition is equivalent to the asymmetric version: B s(f) = ©(B.s)(f) for constant d.

We will also show (using the main result, Theorem 4.1) that this

We consider modifying the bomb query model as follows. We require that the input
string x can only be accessed by the following circuit:

©)
|0)
i)
|a)
Compare with Circuit 15; the difference is that there is now an extra register |a), and the
bomb explodes only if both x; = a and the control bit is 1. In other words, the bomb explodes

if ¢+ (x; ® a) = 1. The three registers ¢, i, and a are allowed to be entangled, however. If we
discard the second register afterwards, the effect of this circuit, written as a projector, is

>

i€[N],a€{0,1}

|

= bomb
|4)

<

(21)

%

4 explodes if 1

Oy

M, = 10,i,a)(0,i,a| + > [1,4,a)(1,i,al. (22)

1,a:T;=a

Let 3675( f) be the required number of queries to this modified bomb oracle M,, to calculate
f(x) with error no more than §, with a probability of explosion no more than e. Using
Theorem 4.1, we show that B and B are equivalent up to a constant:

» Lemma A.l. If f: D — E, where D C {0,1}", and 6 < 1/10 is a constant, then

Bes(f) = O(Bes(f))-

Proof. Tt should be immediately obvious that B.s(f) > B.s(f), since a query in the B
model can be simulated by a query in the B model by simply setting a = 0. In the following
we show that B. s5(f) = O(B.s(f)).

For each string = € {0,1}!V, define the string # € {0,1}?" by concatenating two copies

of x and flipping every bit of the second copy. In other words,

- ZT; if 4 < N
Tr; = (23)

1—2;_n ifi>N

Let D = {# : 2 € D}. Given a function f : D — {0,1}, define f : D — {0,1} by f(z) = f(x).

We claim that a B query to  can be simulated by a B query to . This can be seen by
comparing M,:

> 10,4,a)(0,4,a] +

i€[N],a

Mx = ‘laiaa><17iaa|' (24)

2

i€[N],a:xz;=a
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Mz= Y 10,i){0,il+ > [Li)(1Li]. (25)

i€[2N] 1€[2N]:2;=0

Recalling the definition of & in 23, we see that these two projectors are exactly equal if we
encode i as (i,a), where i =i mod N and a = [i/N]|.
Since f(i) = f(x), we thus have B, 5(f) = Bcs(f). Our result then readily follows; it

can easily be checked that Q(f) = Q(f), and therefore by Theorem 4.1,

Bes(f) = Bes(f) = © (Q(ef)2>

. (Q(f)2> 6)

€

<

There are some advantages to allowing the projector M, instead of M,. First of all, the
inputs 0 and 1 in « are finally manifestly symmetric, unlike that in M, (the bomb originally
blew up if z; = 1, but not if z; = 0). Moreover, we now allow the algorithm to guess an
answer to the query (this answer may be entangled with the index register ), and the bomb
blows up only if the guess is wrong, controlled on ¢. This flexibility may allow more leeway
in designing algorithms for the bomb query model, as we soon utilize.

B Proof of the upper bound for B(f) (Theorem 4.2)

We restate and prove Theorem 4.2:

» Theorem 4.2. For all functions f with boolean input alphabet, and numbers ¢, § satisfying
0<e<d<1/10,

Bes(f) = O(Qs(f)*/e)- (27)

Proof. Let 6 = 7/(2L) for some large positive integer L (chosen later), and let R(¢) be the
rotation

(cosa —sin 9) (28)

sinf cosf

We claim that with 2L calls to the bomb oracle M, = C'P, o, we can simulate O, by the
following circuit with probability of explosion less than 72/(2L) and error O(1/L).

Ir & z;)

|0) (discard)

repeat L times repeat L times (29)

In words, we simulate O, acting on |r,4) by the following steps:
1. Append an ancilla qubit |0), changing the state into |r, 0, ).
2. Repeat the following L times:
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a. apply R(f) on the second register
b. apply M, on the third register controlled by the second register.
At this point, if the bomb hasn’t blown up, the second register should contain 1 — x;.
3. Apply CNOT on the first register controlled by the second register; this copies 1 — z; to
the first register.
4. Apply a NOT gate to the first register.
5. Repeat the following L times to uncompute the second (ancilla) register :
a. apply R(—6) on the second register
b. apply M, on the third register controlled by second register
6. Discard the second (ancilla) register.

We now calculate explicitly the action of the circuit on an arbitrary state to confirm our
claims above. Consider how the circuit acts on the basis state |r,0,4) (the second register
being the appended ancilla). We break into cases:

If z; = 0, then P, o|é) = |i), so the controlled projections do nothing. Thus in Step 2 the
rotation R(0)Y = R(r/2) is applied to the ancilla qubit, rotating it from 0 to 1. After
Step 2 then, the state is |r,1,7). Step 3 and 4 together do not change the state, while
Step 5 rotates the ancilla back to 0, resulting in the final state |r,0, 7).

If z; = 1, then P, o|i) =0, and

M,|0,4) = [0,4), My|1,i)=0 (for z; = 1) (30)

Therefore in Step 2 and Step 5, after each rotation R(+6), the projection C' P, o projects
the ancilla back to O:

M,R(0)|0,7) = Mz(cos0|0) + sin|1))]i) = cos0|0,i) (for z; = 1) (31)

Each application of M, R(#) thus has no change on the state other than to shrink its
amplitude by cos@. The CNOT in Step 3 has no effect (since the ancilla stays in 0), and
Step 4 maps |r) to |r @ 1). Since there are 2L applications of this shrinkage (in Step 2
and 5), the final state is cos?X 0|r @ 1,0, 7).

We can now combine the two cases: by linearity, the application of the circuit on a general
state )., a, 4|7, i) (removing the ancilla) is

Sapilriy— >0 anlriy+ Y apicos® (0)r@1,4) (32)

re{0,1},2;=0 re{0,1},z,=1

= Zam cos?L@i (%) Ir & xi,1) = [¢) (33)

Thus the effect of this construction simulates the usual quantum oracle |r, i) — |r © x;, %)
with probability of explosion no more than
2\ 2L 2
T T T
1—cos4L(—)<1— 1- ) <. 34
2L/ — 412 — 2L (34)
Moreover, the difference between the output of our circuit, [¢'), and the output on the
quantum oracle, ) = ZMA ar ;|7 ® 4,1, 1S

I¥') = 1)l = Y an(l—cos®(9))r @ 1,4) (35)
re{0,1},z;=1
2
<1 —cos?t 2l < Z—L (36)
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Given this construction, we can now prove our theorem. Suppose we are given a quantum
algorithm that finds f(x) with Qs (f) queries, making at most ¢’ = 6 — e error. We construct
an algorithm using bomb oracles instead by replacing each of the applications of the quantum
oracle O, by our circuit construction (29), where we choose

2
- 50000 (37)
Then the probability of explosion is no more than
72
_— ’ <
oy Qo (f) <€ (38)
and the difference between the final states, 1)) and ‘w}>, is at most

€

mwﬂ-ﬂwﬁHSEEQ&U)Si. (39)

Therefore

(U3 [Plws) — Wy Plogp)| < |5 Pl) — (s Pl | + [( | Plivg) — (¢ Pliby)|
< WP () = o) |+ 1P (J95) = [oe) [ 1)1
<e€/24+€/2=¢ (40)

for any projector P (in particular, the projector that projects onto the classical answer at the
end of the algorithm). The algorithm accumulates at most € extra error at the end, giving a
total error of no more than ¢’ + e = §. This algorithm makes 2LQs (f) < “;Qg,(f) +2Qs:(f)
queries to the bomb oracle, and therefore

2

Bes(f) < Qs f)* +2Q5-c(f) (41)
_O(@HUV)_ (42)

€

From this we can derive that Bes(f) = O(Qs(f)?/e):

Bes(f) < Bej2,s(f)
0 (W) . by 42

:O(Qé(cf)2>, since g Sé—g. (43)

C Proof of the adversary lower bound for B(f) (Theorem 4.3)

Before we give the proof of the general result that B(f) = Q(Q(f)?) (Theorem 4.3)), we will
illustrate the proof by means of an example, the special case where f is the AND function.

» Theorem C.1. For 6 < 1/10, B, s(AND) = Q(Z).
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Proof. Let |w?> be the unnormalized state of the algorithm with z = 1™, and |¢f> be the

unnormalized state with x = 1---101---1, a = 0, right before the (¢ + 1)-th call to M,.

Then

[Wf 1) = Uppr M [9F) (44)

for some unitary Uy4;. For ease of notation, we’ll write My = Mi» and My = Mj...101..1,
where the k-th bit is 0 in the latter case. When acting on the control and index bits,

N
My = 10,4)(0, 4|
i=1
N
My, = 10,3)(0,4] + |1, k) (1, kI. (45)
i=1
Since the M;’s are projectors, M? = M,. Define
= (Y{|(I = M;)|vy), i=0,1,---,N. (46)

Note that (i, [0f1) = (Wi|M2[}) = (Vi|Mi|vi) = (Wilvi) — ¢, for all i = 0,--- | N
(including 0!), and hence

Z (Wolh) — (Wrlvh) <e. (47)

t=0

We now define the progress function. Let

W = (00 uk) (48)

and let the progress function be a sum over W*’s:

ZWt = Z WRlYF). (49)
k=1

We can lower bound the total change in the progress function by (see [2] for a proof; their
proof equally applies to unnormalized states)

Wo — Wrp > (1—24/6(1—6))N. (50)
We now proceed to upper bound Wy — Wr. Note that

Wi — W = @Qlr) — (W) | Mo My |1
= (PP |(I = Mo) My |t ) + (| Mo (I — My)|yf)
+ (YY|(I = Mo)(I — My)|vr) (51)

and since Mo(I — M) =0, (I — Mo)My, = |1, k)(1, k|, we have

WE—WE L < @RI R K + ([T = Mo)|wd)|| [|(1 = M)|vf)||

<L, lf)|| + 4/ ek (52)
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where we used 46. Summing over k and t, we obtain

H<1 k"‘/)t H Tt/ €t6t:|

-1

T

1
Wo—Wr <

ﬂ

1

~

T—-1 N

N €+ eF
D WPIL YL kD) + > Y

k=1 t=0 k=1

1

’ﬂ

IA
3
=

<th(1 MO)|¢t> + Ne

t

Il
=

T-1
TN Z €) + Ne
=0

IN

IN

VTN + Ne (53)

where in the second line we used Cauchy-Schwarz and the AM-GM inequality. Combined
with Wy — Wr > (1 — 24/6(1 — §))N (Eq. 50), this immediately gives us

T (1-2 (5(1—5)—6)2]\7. (54)

€

<

We now proceed to prove the general result. This proof follows the presentation given in
A. Childs’s online lecture notes [13], which we found quite illuminating.

» Theorem 4.3. For all functions f with boolean input alphabet, and numbers ¢, § satisfying
0<e<d<1/10,

Bes(f) = 2Qo.01(f)?/e). (55)

Proof. We prove the lower bound on B, 5 by showing that it is lower bounded by Q(Adv*(f)?/e),
where Advi( f) is the generalized (i.e. allowing negative weights) adversary bound [27] for f.
We can then derive our theorem from the result [33] that Q(f) = O(Adv®(f)).

We generalize the bound on the f = AND case to an adversary bound for B.s on
arbitrary f. Define the projectors

N
To = 10,0){0, ]
i=1

It is clear that

N
o+ ) I =1. (57)

i=1

Note that M, = CP, is

M, =TI, + Z ;. (58)

i:x; =0



C.Y.-Y. Lin and H.-H. Lin

Define |¢7) as the state of the algorithm right before the (¢ 4+ 1)-th query with input x;
then

[¥F1) = Urin Ma|97) (59)
for some unitary U;41. Now if we let
e = Wil = Ma)[yy) (60)

then it follows that (F|yf) — (YF 1 [¥f, 1) = €7, and thus

T—1
> € = (WglvE) — (Whlvg) <e. (61)

t=0

We proceed to define the progress function. Let S be the set of allowable input strings x.
Let T" be an adversary matriz, i.e. an S x S matrix such that
1. I'yy =Ty, Vz,y€S;and
2. Ty =0 if f(2) = f(y).

Let a be the normalized eigenvector of T' with eigenvalue +||T||, where £||T'|| is the largest
(by absolute value) eigenvalue of I'. Define the progress function

Wt = Z meaiaquW% (62)

z,yeS

For € < § < 1/10 we have that? (see [27] for a proof; their proof applies equally well to
unnormalized states)

[Wo = W[ = (1 =261 —6) —20)||T'| (63)

We now proceed to upper bound [Wo — Wr| < >, |[W; — W;_;|. Note that

Wi = Wi = Y Tayaiay (WF[0F) — W a9))

x,yeS
= > Tuyaiay (W7 [0F) — (07 [ Mo My[47))
z,yeS
= > Tuyalay (U7 (1 = Me)M,|4})
z,yeS
+ (F Mo (I = My) i) + (7 |(1 — Ma)(I — M,y) 1)) (64)
We bound the three terms separately. For the first two terms, use
(I-M)M,= > I
:x;=1,y;=0
=(I-M) > I (65)

1T Y,

Define the S x S matrix I'; as

Fwy if T 7é Yi
I; = ’

4 As described in [27], the 26 term can be removed if the output is boolean (0 or 1).
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The first term of 64 is

|
_MZ

S>> Tayahay (7| — Mo)IL |y (D3) 4y anay (O |(T — M)y

T,y€S i:x; 7Y, z,yeS i=1
N
=) " tr(QiQD) (67)
i=1
where
Qi =Y a,TL |y} (x| (68)
zeS
= apILi(I — M) |7 ) (xl. (69)
zeS

Although both Q; and Q; depend on t, we suppress the ¢ dependence in the notation.
Similarly, the second term of 64 is equal to Zfil tr(QiFiQ;r). We can also rewrite the third
term of 64 as

> Tayahay (V7|1 — M) (I — M,)[wf) = tr(QTQ™) (70)
z,yeS
where
Q' =" an(I — M)y ) al. (71)
x€S

Therefore, adding absolute values,

N
W = Wit <3 [|r@iriQ))
1=1

+ (@0 + [e(QTQ) (72)

To continue, we need the following lemma:

» Lemma C.2. For any m,n > 0 and matrices X € C™*" Y € C"*", Z € C™*"™ we have
[tr(XY 2)| < | X||eWY | Z||r. Here || - || and || - ||F denote the spectral norm and Frobenius
norm, respectively.

This lemma can be proved by using that [ tr(XY Z)| < |Y|IZX ||t and || ZX || < [| X £ Z]| F,
which follows from [10, Exercise IV.2.12 and Corollary IV.2.6]. A more accessible proof is
found online at [13].

Then by Lemma C.2,

N
<Y Tl 1Qill (73)
i=1
Since
Z 1Qill7 = ZZ EXR A
i=1 z€S
= Z|%| %|ZH V)
xeS
< Z |ax|2
z€eS

=1 (74)
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and

ZHQzIIF—ZZI%I ITL (7 — M) ||

i=1x€S

=3 laa P (7| — M,) (ZH) (I — M) |W§)

€S

< Z Iam\zwfl(f — My)|y)

€S

= Z |ar‘2€f

z€eS

we have, by Cauchy-Schwarz,

N
S IQIENQF < |3 laPer
i=1 z€eS

Therefore by 73 and 76,

> |(@ili@h)

N
‘ iLiQ;)| < /Z |laz|2ef max (T 1.
i=1 z€eS

Similartly for tr(Q'TQ'"), we have

Q% =D lasl® (T = Ma)p)]®

€S

- Z a2 (WE (T — M) |F)

€S

= Z |ax|2ef

z€eS

and using Lemma C.2,
tr(QTQT) < |QIZIT]

=) laefIT|

zeS

Thus continuing from 72, we have that

Wi = Wi <2 /> |au|?e max Tl + Y laaPef (T
z€eS €S

Finally, if we sum the above over ¢ we obtain

[Wo = Wr| < 2 max [T Z > Jagl2ef + Z > laa et ||

t=0 €S t=0 z€S

The first term can be bounded using Cauchy-Schwarz:

T-1 T-1
Do D laaler < \IT DD lasler

t=0 zeSs t=0 z€S

< VeT

(77)

(81)

(82)

(83)
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where we used >, e/ < e and >__ |a,|? = 1. The second term can be summed easily:

T-1
o> lalefIT < D laoel Tl

t=0 z€S T€S
= ¢[|[l'[|. (84)
Therefore
[Wo — Wr| < 2VeT max (T2 + €l T[] (85)

Combined with our lower bound |Wy — Wr| > (1 — 24/6(1 — 6) — 20)||T||, this immediately
gives

T> (1 —24/6(1—6) —25 —¢)? T2
- 4e

. 86
maie A2 (86)
Recalling that [27]
3l
AdvE(f) = max ”7, 87)
) = e e T (
we obtain®
1—2/6(1=0)—26 —¢)?
7> ( y ) J AdvE(f)2 (88)
€

We now use the tight characterization of the quantum query complexity by the general
weight adversary bound:

» Theorem C.3 ([33, Theorem 1.1]). Let f: D — E, where D C {0,1}". Then Qo.01(f) =
O(Adv™(f)).

Combined with our result above, we obtain

Bua(f) = o (Lol (59)

€

D Proof of Theorem 5.1
We restate and prove Theorem 5.1:

» Theorem 5.1. Let f : D — E, where D C {0,1}". Suppose there is a classical randomized
query algorithm A, that makes at most T queries, and evaluates f with bounded error. Let
the query results of A on random seed s4 be xp,, zp,, - S Tpry T(x) < T, where x is the
hidden query string.

Suppose there is another (not necessarily time-efficient) randomized algorithm G, with
random seed sg, which takes as input x,,, - ,p,_, and s4, and outputs a guess for the

5 For boolean output (0 or 1) the 2§ term can be dropped, as we previously noted (Footnote 4).
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next query result z,, of A. Assume that G makes no more than an expected total of G
mistakes (for all inputs x). In other words,

T ()

| DF Z |Q(xp1,--- s Tp,_ 1, SA,SG) — xpt| <G V. (90)
t=1

Note that G is given the random seed s 4 of A, so it can predict the next query index of \A.
Then B.(f) = O(TG/e), and thus (by Theorem 4.1) Q(f) = O(VTG).

Proof. For the purposes of this proof, we use the characterization of B by the modified bomb

construction given in section A.2. This proof is substantially similar to that of theorem 4.2.

The following circuit finds z; with zero probability of explosion if x; = a, and with an
O(1/L) probability of explosion if x; # a (in both cases the value of z; found by the circuit
is always correct):

D X | |a)

T
|

M |2)
|

i) i M. |
‘ —
@) —_— —1__ h |a)

L times in total (91)

where 6 = w/(2L) for some large number L to be picked later, and

cosf) —sinf

= 2
R(6) (sinﬁ cos ) (92)

The boxed part of the circuit is then simply [M,(R(8) ® I ® I)]*, applied to the state |0, 1, a).

We can analyze this circuit by breaking into cases:

If z; = a, then M,|)]i,a) = |¢)|i,a) for any state |¢) in the control register. Thus the
M,’s act as identities, and the circuit simply applies the rotation R(A)* = R(7/2) to the
control register, rotating it from 0 to 1. We thus obtain the state |1,4,a); the final CNOT
and X gates add a @ 1 = x; ® 1 to the first register, giving |x;, %, a).

If ; # a, then

M,|0,i,a) = 10,4,a), M,|l,i,a) =0 (for z; # a) (93)

Therefore after each rotation R(6), the projection M, projects the control qubit back to
0:

M, (R(O)®IR1)|0,i,a) = M,(cos0|0)+sin 8]1))]i,a) = cos0]|0,4,a) (for z; # a) (94)

In this case the effect of M,(R(f) ® I ® I) is to shrink the amplitude by cos(6); L
applications results in the state cos’(#)[0,7,a). The final CNOT and X gates add
a® 1= z; to the first register, giving |x;, 4, a).

The probability of explosion is 0 if x; = a. If x; # a, the probability of explosion is

2

o (T T
_ )< L
1 —cos <2L)_4 . (95)
Pick
G
L= .
[ 4J (96)
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Then the probability of explosion is 0 if 2; = a, and no more than €¢/G if z; # a. If the bomb
does not explode, then the circuit always finds the correct value of x;.

We now construct the bomb query algorithm based on A and G. The bomb query
algorithm follows A, with each classical query replaced by the above construction. There
are no more than TL ~ 7w2TG /(4¢) bomb queries. At each classical query, we pick the guess
a to be the guess provided by G. The bomb only has a chance of exploding if the guess is
incorrect; hence for all x, the total probability of explosion is no more than

€
G Boaso § D2 [9(@p, o+ wpe 1 54,50) = wp| p <€ (97)
t=1

Thus replacing the classical queries of A with our construction gives a bomb query algorithm
with probability of explosion no more than ¢; aside from the probability of explosion, this
bomb algorithm makes no extra error over the classical algorithm A. The number of queries
this algorithm uses is

Besilf) < mﬂ T, (98)

where 0 is the error rate of the classical algorithm. Therefore by Lemma A.1 and Theorem
4.1,

Be(f) = O(Beste(f) = O(Besie(f)) = O(TG/e) (99)

<

E Proof of Theorem 5.3

We restate and prove Theorem 5.3:

» Theorem 5.3 (Finding the first marked element in a list). Suppose there is an ordered list of
N elements, and each element is either marked or unmarked. Then there is a bounded-error
quantum algorithm for finding the first marked element in the list, or determines that no
marked elements exist, such that:

If the first marked element is the d-th element of the list, then the algorithm uses an

expected O(v/d) time and queries.

If there are no marked elements, then the algorithm uses O(v/N) time and queries.

Proof. We give an algorithm that has the stated properties. We first recall a quantum
algorithm for finding the minimum in a list of items:

» Theorem E.1 ([18]). Given a function g on a domain of N elements, there is a quantum
algorithm that finds the minimum of g with expected O(v/N) time and evaluations of g,
making 0 < 1/10 error.

We now give our algorithm for finding the first marked element in a list. For simplicity,
assume that N is a power of 2 (i.e. log, N is an integer).

» Algorithm E.2.
1. For £ =20,21 22 ... 2N — .
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2.

Find the first marked element within the first ¢ elements, or determine no marked
element exists. This can be done by defining

oo if 7 is unmarked

i) = 100

9(0) {z if ¢ is marked, (100)
and using Theorem E.1 to find the minimum of g. This takes O(v/) = O(v/d) queries
and makes 0 < 1/10 error for each ¢. If a marked element i* is found, the algorithm
outputs ¢* and stops.

If no marked element was found in Step 1, the algorithm decides that no marked element

exists.

We now claim that Algorithm E.2 has the desired properties. Let us break into cases:

If no marked items exist, then no marked item can possibly be found in Step 1, so the
algorithm correctly determines that no marked items exist in Step 2. The number of
queries used is

logy N

> V2i=0(VN) (101)
=0

as desired.

Suppose the first marked item is the d-th item in the list. Then in Step 1(a), if £ > d,
there is at least a 1 — § probability that the algorithm will detect that a marked item
exists in the first ¢ elements and stop the loop. Letting oo = [log, d], the total expected
number of queries is thus

a—1 logy N
. : . 20/2 — 1 1
DoV > eVl 0(Vd) < SV V20— + O(Vad)
i=0 i=a
= 0(V2%) + O(Vd)
= O(Vd). (102)
The probability of not finding the marked item at the first £ > d is at most ¢ , and thus

the total error of the algorithm is bounded by 4.
<

Explicit quantum algorithm for Theorem 5.2

» Algorithm F.1 (Simulating a classical query algorithm by a quantum one).

Input. Classical randomized algorithm A that computes f with bounded error. Classical
randomized algorithm G that guesses queries of A. Oracle O, for the hidden string x.

Output. f(x) with bounded error.

The quantum algorithm proceeds by attempting to produce the list of queries and results

that A would have made. More precisely, given a randomly chosen random seed s 4, the quan-
tum algorithm outputs (with constant error) a list of pairs (p1(2), ¥y, (2)), *** » (Pp(2) (@), xpf(z)(w)).
This list is such that on random seed s4, the i-th query algorithm of A is made at the

position p;(z), and the query result is 2, ;). The quantum algorithm then determines the
output of A using this list.
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The main idea for the algorithm is this: we first assume that the guesses made by G are
correct. By repeatedly feeding the output of G back into A and G, we can obtain a list of
query values for A without any queries to the actual black box. We then search for the first
deviation of the string = from the predictions of G; assuming the first deviation is the d;-th
query, by Theorem 5.3 the search takes O(y/d;) queries (ignoring error for now). We then
know that all the guesses made by G are correct up to the (d; — 1)-th query, and incorrect
for the d;-th query.

With the corrected result of the first dy queries, we now continue by assuming again
the guesses made by G are correct starting from the (d; + 1)-th query, and search for the
location of the next deviation, dp. This takes O(y/dy — d;) queries; we then know that all
the guesses made by G are correct from the (dy + 1)-th to (d2 — 1)-th query, and incorrect
for the ds-th one. Continuing in this manner, we eventually determine all query results of A
after an expected G iterations.

We proceed to spell out our algorithm. For the time being, we assume that the algorithm
for Theorem 5.3 (i.e. Algorithm E.2) has no error and thus requires no error reduction.

1. Initialize random seeds s 4 and sg for A and G. We will simulate the behavior of A and G
on these random seeds. Initialize d = 0. d is such that we have determined the values of
all query results of A up to the d-th query. Also initialize an empty list £ of query pairs.

2. Repeat until either all query results of A are determined, or 100G iterations of this loop
have been executed:

a. Assuming that G always guesses correctly starting from the (d + 1)-th query, compute
from A and G a list of query positions pgy1, Pi+2, -+ and results Gqy1, dq+2, . This
requires no queries to the black box.

b. Using our algorithm for finding the first marked element (Theorem 5.3, Algorithm
E.2), find the first index d* > d such that the actual query result of A differs from
the guess by G, i.e. x,, # Gq; or return that no such d* exists. This takes O(v/d* — d)
time in the former case, and O(v/T — d) time in the latter.

c. We break into cases:

i. If an index d* was found in Step 2b, then the algorithm decides the next mistake made
by G is at position d*. It thus adds the query pairs (pg+1,@dg+1),- -+ 5 (Pdr—1, Gar—1),
and the pair (pg+,1 — aq+), to the list £. Also set d = d*.

ii. If no index d* was found in Step 2b, the algorithm decides that all remaining guesses
by G are correct. Thus the query pairs (pg+1,@dg+1)," " , (pf(m)7 d’f(w)) are added to
L, where T(x) < T is the number of queries made by A.

3. If the algorithm found all query results of A in 100G iterations of step 2, use L to calculate
the output of A; otherwise the algorithm fails.

We now count the total number of queries. Suppose g < 100G is the number of iterations
of Step 2; if all query results have been determined, ¢ is the number of wrong guesses by
G. Say the list of d’s found is dy = 0,d1,--- ,dg4. Let dg41 =T. Step 2 is executed for g + 1
times, and the total number of queries is

0 (% m) -0 (V/Tg) =0 (VTG) (103)

by the Cauchy-Schwarz inequality.
We now analyze the error in our algorithm. The first source of error is cutting off the loop
in Step 2: by Markov’s inequality, for at least 99% of random seeds sg, sg, G makes no more
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than 100G wrong guesses. For these random seeds all query results of A are determined.
Cutting off the loop thus gives at most 0.01 error.

The other source of error is the error of Algorithm E.2 used in Step 2b: we had assumed
that it could be treated as zero-error, but we now remove this assumption. Assuming each
iteration gives error &', the total error accrued could be up to O(gd’). It seems as if we
would need to set & = O(1/G) for the total error to be constant, and thus gain an extra
logarithmic factor in the query complexity.

However, in his paper for oracle identification [31], Kothari showed that multiple calls
to Algorithm E.2 can be composed to obtain a bounded-error algorithm based on span
programs without an extra logarithmic factor in the query complexity; refer to [31, Section
3] for details. Therefore we can replace the iterations of Step 2 with Kothari’s span program
construction and get a bounded error algorithm with complexity O(v/TG).

G Proof of Theorem 6.5

We restate and prove Theorem 6.5:

» Theorem 6.5. The quantum query complexity of maximum bipartite matching is O(n7/4)
in the adjacency matrix model, where n is the number of vertices.

Proof. We apply Theorem 5.2 to a classical algorithm. Classically, this problem is solved
in O(n®/?) time by the Hopcroft-Karp [23] algorithm (here n = |V]). We summarize the
algorithm as follows (this summary roughly follows that of [4]):

» Algorithm G.1 (Hopcroft-Karp algorithm for maximum bipartite matching [23]).

1. Initialize an empty matching M. M is a matching that will be updated until it is
maximum.

2. Repeat the following steps until M is a maximum matching:
a. Define the directed graph H = (V' E’) as follows:

Vi=XUY U{st}
E' ={(s,z)|z e X, (z,y) g M forall y € Y}
U{(z,y) |z e X,y €Y, (a,y) € E,(z,y) € M}
U{(y,2) |z € X,y €Y, (z,y) € E,(2,y) € M}
U{(y,t) |y eY,(z,y) ¢ M forall x € X} (104)

where s and ¢ are two extra auxilliary vertices. Note that if (s, 21, y1,Z2,y2, " , Te, Yo, t)
isapathin H from s tot, then z; € X and y; € Y for all i. Additionally, the edges (aside
from the first and last) alternate from being in M and not being in M: (x;,y;) € M,
(yi, xiy1) € M. Such a path is called an augmenting path in the literature.

We note that a query to the adjacency matrix of E’ can be simulated by a query to
the adjacency matrix of F.

b. Using breadth-first search, in the graph H, find the distances of all vertices from s.

Let the distance from s to ¢t be 2¢ + 1.

c. Find a maximal set S of vertex-disjoint shortest paths from s to ¢ in the graph H. In
other words, S should be a list of paths from s to ¢ such that each path has length
2¢ 4+ 1, and no pair of paths share vertices except for s and ¢t. Moreover, all other
shortest paths from s to ¢ share at least one vertex (except for s and ¢) with a path in
S. We describe how to find such a maximal set in Algorithm G.2.
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d. If S is empty, the matching M is a maximum matching, and we terminate. Otherwise
continue:

e. Let (s,z1,y1,%2,Y2, -+ ,Z¢, Yo, t) be a path in S. Remove the ¢ — 1 edges (z;41,¥;)
from M, and insert the ¢ edges (z;,y;) into M. This increases |[M| by 1. Repeat for
all paths in S; there are no conflicts since the paths in S are vertex-disjoint.

Once again, we omit the proof of correctness of this algorithm; the correctness is guaranteed
by Berge’s Lemma [8], which states that a matching is maximum if there are no more
augmenting paths for the matching. Moreover, O(y/n) iterations of Step 2 suffice [23].

We now describe how to find a maximal set of shortest-length augmenting paths in Step
2(c). This algorithm is essentially a modified version of depth-first search:

» Algorithm G.2 (Finding a maximal set of vertex-disjoint shortest-length augmenting paths).

Input. The directed graph H defined in Algorithm G.1, as well as the distances d,, of all
vertices v from s (calculated in Step 2(b) of Algorithm G.1).

1. Initialize a set of paths S := (), set of vertices R := {s}, and a stack® of vertices £ := (s). £
contains the ordered list of vertices that we have begun, but not yet finished, processing. R
is the set of vertices that we have processed. S is the set of vertex-disjoint shortest-length
augmenting paths that we have found.

2. Repeat until £ is empty:

a. If the vertex in the front of £ is ¢, we have found a new vertex-disjoint path from s to
t:

Trace the path from ¢ back to s by removing elements from the front of £ until s is
at the front. Add the corresponding path to S.
Start again from the beginning of Step 2.

b. Let v be the vertex in the front of £ (i.e. the vertex last added to, and still in, £).
Recall the distance from s to v is d,.

c. Find w such that w ¢ R, d, = d, + 1, and (v,w) (as an edge in H) has not been
queried in this algorithm. If no such vertex w exists, remove v from £ and start from
the beginning of Step 2.

d. Query (v, w) on the graph H.

e. If (v,w) is an edge, add w to the front of L. If w # t, add w to R.

3. Output S, the maximal set of vertex-disjoint shortest-length augmenting paths.

We now return to Algorithm G.1 and count 7" and G. There is obviously no need to
query the same edge more than once, so T = O(n?). If the algorithm always guesses, on
a query (v,w), that there is no edge between (v,w), then it makes at most G = O(n®/?)
mistakes: in Step 2(b) there are at most O(n) mistakes (see the proof of Theorem 6.2), while
in Step 2(c)/Algorithm G.2 there is at most one queried edge leading to each vertex aside
from t, and edges leading to ¢ can be computed without queries to the adjacency matrix of
H. Since Step 2 is executed O(y/n) times, our counting follows.

Thus there is a quantum query algorithm with complexity Q@ = O(VTG) = O(n"/%).

<

6 A stack is a data structure such that elements that are first inserted into the stack are removed last.
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