1,200 research outputs found

    A remotely-operated facility for evaluation of post-combustion CO2 capture technologies on industrial sites

    Get PDF
    ACTTROM (Advanced Capture Testing in a Transportable Remotely-Operated Minilab) is a transportable test facility for bench-scale evaluation of postcombustion CO2 capture technologies using real industrial flue gases. It is designed to be remote-operable, requiring visits only once per month for maintenance and sample collection. ACTTROM is the first facility of its kind, owned and operated by academia for collaborative research in an industrial environment, and this has resulted in a number of unique developments to facilitate remote operation at an industrial host site. Specifically, it has been necessary to design the unit to automatically correct or mitigate the effects of fault conditions, and to be remotely-monitored via a user interface at 24 hour intervals

    Poincare Invariant Three-Body Scattering

    Full text link
    Relativistic Faddeev equations for three-body scattering are solved at arbitrary energies in terms of momentum vectors without employing a partial wave decomposition. Relativistic invariance is incorporated withing the framework of Poincar\'e invariant quantum mechanics. Based on a Malfliet-Tjon interaction, observables for elastic and breakup scattering are calculated and compared to non-relativistic ones.Comment: 4 pages, 2 figures. Proceedings of the workshop "Critical Stability of Few-Body Quantum Systems" 200

    A (Running) Bolt for New Reasons

    Full text link
    We construct a four-parameter family of smooth, horizonless, stationary solutions of ungauged five-dimensional supergravity by using the four-dimensional Euclidean Schwarzschild metric as a base space and "magnetizing" its bolt. We then generalize this to a five-parameter family based upon the Euclidean Kerr-Taub-Bolt. These "running Bolt" solutions are necessarily non-static. They also have the same charges and mass as a non-extremal black hole with a classically-large horizon area. Moreover, in a certain regime their mass can decrease as their charges increase. The existence of these solutions supports the idea that the singularities of non-extremal black holes are resolved by low-mass modes that correct the singularity of the classical black hole solution on large (horizon-sized) scales.Comment: 25 pages, 3 figures, LaTeX; v2: minor changes, references adde

    How quantum bound states bounce and the structure it reveals

    Get PDF
    We investigate how quantum bound states bounce from a hard surface. Our analysis has applications to ab initio calculations of nuclear structure and elastic deformation, energy levels of excitons in semiconductor quantum dots and wells, and cold atomic few-body systems on optical lattices with sharp boundaries. We develop the general theory of elastic reflection for a composite body from a hard wall. On the numerical side we present ab initio calculations for the compression of alpha particles and universal results for two-body states. On the analytical side we derive a universal effective potential that gives the reflection scattering length for shallow two-body states.Comment: final publication version, new lattice results on alpha particle compression, 5 pages, 2 figure

    Two-Nucleon Scattering without partial waves using a momentum space Argonne V18 interaction

    Full text link
    We test the operator form of the Fourier transform of the Argonne V18 potential by computing selected scattering observables and all Wolfenstein parameters for a variety of energies. These are compared to the GW-DAC database and to partial wave calculations. We represent the interaction and transition operators as expansions in a spin-momentum basis. In this representation the Lippmann-Schwinger equation becomes a six channel integral equation in two variables. Our calculations use different numbers of spin-momentum basis elements to represent the on- and off-shell transition operators. This is because different numbers of independent spin-momentum basis elements are required to expand the on- and off-shell transition operators. The choice of on and off-shell spin-momentum basis elements is made so that the coefficients of the on-shell spin-momentum basis vectors are simply related to the corresponding off-shell coefficients.Comment: 14 pages, 8 Figures, typos correcte

    Effective DBHF Method for Asymmetric Nuclear Matter and Finite Nuclei

    Full text link
    A new decomposition of the Dirac structure of nucleon self-energies in the Dirac Brueckner-Hartree-Fock (DBHF) approach is adopted to investigate the equation of state for asymmetric nuclear matter. The effective coupling constants of σ\sigma , ω\omega , δ\delta and ρ\rho mesons with a density dependence in the relativistic mean field approach are deduced by reproducing the nucleon self-energy resulting from the DBHF at each density for symmetric and asymmetric nuclear matter. With these couplings the properties of finite nuclei are investigated. The agreement of charge radii and binding energies of finite nuclei with the experimental data are improved simultaneously in comparison with the projection method. It seems that the properties of finite nuclei are sensitive to the scheme used for the DBHF self-energy extraction. We may conclude that the properties of the asymmetric nuclear matter and finite nuclei could be well described by the new decomposition approach of the G matrix.Comment: 16 pages, 5 figure

    Quantum Computing with Atomic Josephson Junction Arrays

    Full text link
    We present a quantum computing scheme with atomic Josephson junction arrays. The system consists of a small number of atoms with three internal states and trapped in a far-off resonant optical lattice. Raman lasers provide the "Josephson" tunneling, and the collision interaction between atoms represent the "capacitive" couplings between the modes. The qubit states are collective states of the atoms with opposite persistent currents. This system is closely analogous to the superconducting flux qubit. Single qubit quantum logic gates are performed by modulating the Raman couplings, while two-qubit gates result from a tunnel coupling between neighboring wells. Readout is achieved by tuning the Raman coupling adiabatically between the Josephson regime to the Rabi regime, followed by a detection of atoms in internal electronic states. Decoherence mechanisms are studied in detail promising a high ratio between the decoherence time and the gate operation time.Comment: 7 figure

    Computational Nuclear Physics and Post Hartree-Fock Methods

    Full text link
    We present a computational approach to infinite nuclear matter employing Hartree-Fock theory, many-body perturbation theory and coupled cluster theory. These lectures are closely linked with those of chapters 9, 10 and 11 and serve as input for the correlation functions employed in Monte Carlo calculations in chapter 9, the in-medium similarity renormalization group theory of dense fermionic systems of chapter 10 and the Green's function approach in chapter 11. We provide extensive code examples and benchmark calculations, allowing thereby an eventual reader to start writing her/his own codes. We start with an object-oriented serial code and end with discussions on strategies for porting the code to present and planned high-performance computing facilities.Comment: 82 pages, to appear in Lecture Notes in Physics (Springer), "An advanced course in computational nuclear physics: Bridging the scales from quarks to neutron stars", M. Hjorth-Jensen, M. P. Lombardo, U. van Kolck, Editor

    Renormalization group approach to an Abelian sandpile model on planar lattices

    Full text link
    One important step in the renormalization group (RG) approach to a lattice sandpile model is the exact enumeration of all possible toppling processes of sandpile dynamics inside a cell for RG transformations. Here we propose a computer algorithm to carry out such exact enumeration for cells of planar lattices in RG approach to Bak-Tang-Wiesenfeld sandpile model [Phys. Rev. Lett. {\bf 59}, 381 (1987)] and consider both the reduced-high RG equations proposed by Pietronero, Vespignani, and Zapperi (PVZ) [Phys. Rev. Lett. {\bf 72}, 1690 (1994)] and the real-height RG equations proposed by Ivashkevich [Phys. Rev. Lett. {\bf 76}, 3368 (1996)]. Using this algorithm we are able to carry out RG transformations more quickly with large cell size, e.g. 3×33 \times 3 cell for the square (sq) lattice in PVZ RG equations, which is the largest cell size at the present, and find some mistakes in a previous paper [Phys. Rev. E {\bf 51}, 1711 (1995)]. For sq and plane triangular (pt) lattices, we obtain the only attractive fixed point for each lattice and calculate the avalanche exponent τ\tau and the dynamical exponent zz. Our results suggest that the increase of the cell size in the PVZ RG transformation does not lead to more accurate results. The implication of such result is discussed.Comment: 29 pages, 6 figure
    corecore