17 research outputs found

    \u3cem\u3eArabidopsis thaliana\u3c/em\u3e GLX2-1 Contains a Dinuclear Metal Binding Site, but Is Not a Glyoxalase 2

    Get PDF
    In an effort to probe the structure and function of a predicted mitochondrial glyoxalase 2, GLX2-1, from Arabidopsis thaliana, GLX2-1 was cloned, overexpressed, purified and characterized using metal analyses, kinetics, and UV–visible, EPR, and 1H-NMR spectroscopies. The purified enzyme was purple and contained substoichiometric amounts of iron and zinc; however, metal-binding studies reveal that GLX2-1 can bind nearly two equivalents of either iron or zinc and that the most stable analogue of GLX2-1 is the iron-containing form. UV–visible spectra of the purified enzyme suggest the presence of Fe(II) in the protein, but the Fe(II) can be oxidized over time or by the addition of metal ions to the protein. EPR spectra revealed the presence of an anti-ferromagnetically-coupled Fe(III)Fe(II) centre and the presence of a protein-bound high-spin Fe(III) centre, perhaps as part of a FeZn centre. No paramagnetically shifted peaks were observed in 1H-NMR spectra of the GLX2-1 analogues, suggesting low amounts of the paramagnetic, anti-ferromagnetically coupled centre. Steady-state kinetic studies with several thiolester substrates indicate that GLX2-1 is not a GLX2. In contrast with all of the other GLX2 proteins characterized, GLX2-1 contains an arginine in place of one of the metal-binding histidine residues at position 246. In order to evaluate further whether Arg246 binds metal, the R246L mutant was prepared. The metal binding results are very similar to those of native GLX2-1, suggesting that a different amino acid is recruited as a metal-binding ligand. These results demonstrate that Arabidopsis GLX2-1 is a novel member of the metallo-β-lactamase superfamily

    Human Glyoxalase II Contains an Fe(II)Zn(II) Center but Is Active as a Mononuclear Zn(II) Enzyme

    Get PDF
    Human glyoxalase II (Glx2) was overexpressed in rich medium and in minimal medium containing zinc, iron, or cobalt, and the resulting Glx2 analogues were characterized using metal analyses, steady-state and pre-steady-state kinetics, and NMR and EPR spectroscopies to determine the nature of the metal center in the enzyme. Recombinant human Glx2 tightly binds nearly 1 equiv each of Zn(II) and Fe. In contrast to previous reports, this study demonstrates that an analogue containing 2 equiv of Zn(II) cannot be prepared. EPR studies suggest that most of the iron in recombinant Glx2 is Fe(II). NMR studies show that Fe(II) binds to the consensus Zn2 site in Glx2 and that this site can also bind Co(II) and Ni(II), suggesting that Zn(II) binds to the consensus Zn1 site. The NMR studies also reveal the presence of a dinuclear Co(II) center in Co(II)-substituted Glx2. Steady-state and pre-steady-state kinetic studies show that Glx2 containing only 1 equiv of Zn(II) is catalytically active and that the metal ion in the consensus Zn2 site has little effect on catalytic activity. Taken together, these studies suggest that Glx2 contains a Fe(II)Zn(II) center in vivo but that the catalytic activity is due to Zn(II) in the Zn1 site

    The Metal Ion Requirements of \u3cem\u3eArabidopsis thaliana\u3c/em\u3e Glx2-2 for Catalytic Activity

    Get PDF
    In an effort to better understand the structure, metal content, the nature of the metal centers, and enzyme activity of Arabidopsis thaliana Glx2-2, the enzyme was overexpressed, purified, and characterized using metal analyses, kinetics, and UV–vis, EPR, and 1H NMR spectroscopies. Glx2-2-containing fractions that were purple, yellow, or colorless were separated during purification, and the differently colored fractions were found to contain different amounts of Fe and Zn(II). Spectroscopic analyses of the discrete fractions provided evidence for Fe(II), Fe(III), Fe(III)–Zn(II), and antiferromagnetically coupled Fe(II)–Fe(III) centers distributed among the discrete Glx2-2-containing fractions. The individual steady-state kinetic constants varied among the fractionated species, depending on the number and type of metal ion present. Intriguingly, however, the catalytic efficiency constant, k cat/K m, was invariant among the fractions. The value of k cat/K m governs the catalytic rate at low, physiological substrate concentrations. We suggest that the independence of k cat/K m on the precise makeup of the active-site metal center is evolutionarily related to the lack of selectivity for either Fe versus Zn(II) or Fe(II) versus Fe(III), in one or more metal binding sites

    Converting GLX2-1 into an Active Glyoxalase II

    Get PDF
    Arabidopsis thaliana glyoxalase 2-1 (GLX2-1) exhibits extensive sequence similarity with GLX2 enzymes but is catalytically inactive with SLG, the GLX2 substrate. In an effort to identify residues essential for GLX2 activity, amino acid residues were altered at positions 219, 246, 248, 325, and 328 in GLX2-1 to be the same as those in catalytically active human GLX2. The resulting enzymes were overexpressed, purified, and characterized using metal analyses, fluorescence spectroscopy, and steady-state kinetics to evaluate how these residues affect metal binding, structure, and catalysis. The R246H/N248Y double mutant exhibited low level S-lactoylglutathione hydrolase activity, while the R246H/N248Y/Q325R/R328K mutant exhibited a 1.5−2-fold increase in kcat and a decrease in Km as compared to the values exhibited by the double mutant. In contrast, the R246H mutant of GLX2-1 did not exhibit glyoxalase 2 activity. Zn(II)-loaded R246H GLX2-1 enzyme bound 2 equiv of Zn(II), and 1H NMR spectra of the Co(II)-substituted analogue of this enzyme strongly suggest that the introduced histidine binds to Co(II). EPR studies indicate the presence of significant amounts a dinuclear metal ion-containing center. Therefore, an active GLX2 enzyme requires both the presence of a properly positioned metal center and significant nonmetal, enzyme−substrate contacts, with tyrosine 255 being particularly important

    Two-Photon-Induced Electron Transfer between β-Carotene and Carbon Tetrachloride.

    No full text
    β-carotene (βC) is the plant pigment responsible for the orange color of carrots, oranges and other “yellow” fruits and vegetables. It is also present in green leaves, where it serves to protect plants from light-induced damage during photosynthesis. Because plants lacking βC die upon exposure to light, some “light-activated herbicides” are designed to mediate their toxicity by destroying this pigment via a βC-to-herbicide “photoinduced electron transfer” (PET) process. In similar fashion, we find that solutions of βC in chloromethane solvents are stable upon exposure to diffuse visible light, but rapidly turn colorless upon exposure to intense, green laser pulses. The rate of color loss depends on the square of the laser intensity, suggesting that either βC or solvent molecules absorb two photons and subsequently generate free radicals which degrade βC. To specify whether βC or solvent molecules absorb two photons, we have characterized the yield of chlorine radicals (•Cl) and chloride (Cl–) ions by placing βC-chloromethane solutions in contact with pure water and aqueous potassium iodide and silver nitrate. We find that two photons are absorbed and Cl and •Cl are generated only when βC is present. Accordingly, we propose a “two-photon βC to-solvent” PET mechanism which is consistent with our results and discuss the implications of this mechanism for herbicide design and development

    Fibronectin mediates mesendodermal cell fate decisions

    No full text
    Non-cell-autonomous signals often play crucial roles in cell fate decisions during animal development. Reciprocal signaling between endoderm and mesoderm is vital for embryonic development, yet the key signals and mechanisms remain unclear. Here, we show that endodermal cells efficiently promote the emergence of mesodermal cells in the neighboring population through signals containing an essential short-range component. The endoderm-mesoderm interaction promoted precardiac mesoderm formation in mouse embryonic stem cells and involved endodermal production of fibronectin. In vivo, fibronectin deficiency resulted in a dramatic reduction of mesoderm accompanied by endodermal expansion in zebrafish embryos. This event was mediated by regulation of Wnt signaling in mesodermal cells through activation of integrin-β1. Our findings highlight the importance of the extracellular matrix in mediating short-range signals and reveal a novel function of endoderm, involving fibronectin and its downstream signaling cascades, in promoting the emergence of mesoderm.</jats:p
    corecore