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Abstract 

 

Human glyoxalase II (Glx2) was overexpressed in rich medium and in minimal medium containing zinc, iron, or 

cobalt, and the resulting Glx2 analogues were characterized using metal analyses, steady-state and pre-steady-

state kinetics, and NMR and EPR spectroscopies to determine the nature of the metal center in the enzyme. 

Recombinant human Glx2 tightly binds nearly 1 equiv each of Zn(II) and Fe. In contrast to previous reports, this 

study demonstrates that an analogue containing 2 equiv of Zn(II) cannot be prepared. EPR studies suggest that 

most of the iron in recombinant Glx2 is Fe(II). NMR studies show that Fe(II) binds to the consensus Zn2 site in 

Glx2 and that this site can also bind Co(II) and Ni(II), suggesting that Zn(II) binds to the consensus Zn1 site. The 

NMR studies also reveal the presence of a dinuclear Co(II) center in Co(II)-substituted Glx2. Steady-state and 

pre-steady-state kinetic studies show that Glx2 containing only 1 equiv of Zn(II) is catalytically active and that 

the metal ion in the consensus Zn2 site has little effect on catalytic activity. Taken together, these studies 

suggest that Glx2 contains a Fe(II)Zn(II) center in vivo but that the catalytic activity is due to Zn(II) in the Zn1 site. 

FUNDING STATEMENT 
This work was supported by the National Institutes of Health (Grant AI056231 to B.B., Grant GM076199-01A2 to 

C.A.M., and Grant EB001980 to the Medical College of Wisconsin), the Miami University/Volwiler Professorship 

(to M.W.C.), and a Presidential Academic Enrichment Fellowship (to P.L.). 

The glyoxalase system consists of two enzymes, lactoylglutathione lyase (glyoxalase I, Glx1) and 

hydroxyacylglutathione hydrolase (glyoxalase II, Glx2) (1-3). Glx1 is capable of forming S-(2-

hydroxyacyl)glutathione (SLG),1 which is made from the thiohemiacetal produced from a spontaneous reaction 

of methylglyoxal and glutathione. SLG (and other related glutathione thiolesters) is then hydrolyzed by Glx2 to 

form d-lactate and glutathione. Glyoxalase I can utilize a number of α-ketoaldehydes; however, the primary 

physiological substrate of the system is thought to be methylglyoxal (MG), a cytotoxic and mutagenic compound 

that is formed primarily as a byproduct of carbohydrate and lipid metabolism and from triosephosphates (2, 4-

6). SLG is also cytotoxic because of its ability to inhibit DNA synthesis (2, 7). While SLG can also be metabolized 

by γ-glutamyltransferase and dipeptidase, these processes generate N-d-lactoylcysteine, which also inhibits 

nucleotide synthesis (7). Therefore, the glyoxalase system, which depletes MG and SLG, plays a critical role in 

cellular detoxification (1, 8). 

Abbreviations: EDTA, ethylenediaminetetraacetic acid; FPLC, fast performance liquid chromatography; Glx2-

Comin, recombinant human glyoxalase II overexpressed in minimal medium containing Co(II); Glx2-Comin+Zn(II), 



recombinant human glyoxalase II overexpressed in minimal medium containing Co(II) to which was added 1 

equiv of Zn(II); Glx2-Femin+Zn(II), recombinant human glyoxalase II overexpressed in minimal medium containing 

Fe and Zn(II); Glx2-LB, recombinant human glyoxalase II overexpressed in LB medium; Glx2-LB+1.5Zn+1.5Fe, 

recombinant human glyoxalase II overexpressed in LB medium which was incubated with 1.5 equiv of Zn(II) and 

Fe(II) and dialyzed; Glx2-Znmin, recombinant human glyoxalase II overexpressed in minimal medium containing 

Zn(II); Glx2-Znmin+Ni(II), recombinant human glyoxalase II overexpressed in minimal medium containing Zn(II) to 

which was added 1 equiv of Ni(II); Glx2-Znmin+3equivFe(II), recombinant human glyoxalase II overexpressed in 

minimal medium containing Zn(II) which was incubated with 3 equiv of Fe(II) and dialyzed; Glx2-

Znmin+3equivZn(II), recombinant human glyoxalase II overexpressed in minimal medium containing Zn(II) which 

was incubated with 3 equiv of Zn(II) and dialyzed; HEPES, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; 

ICP-AES, inductively coupled plasma with atomic emission spectroscopy detection; IPTG, isopropyl β-d-

thiogalactopyranoside; LB, Luria-Bertani; MG, methylglyoxal; MOPS, 3-morpholinopropanesulfonic acid; PMSF, 

phenylmethanesulfonyl fluoride; SDS−PAGE, sodium dodecyl sulfate−polyacrylamide gel electrophoresis; SLG, S-

(2-hydroxyacyl)glutathione. 

Because of its role in cellular detoxification, the glyoxalase system has received considerable attention as a 

possible antitumor and antiparasitic target in animal systems (1, 9-18). Increased levels of Glx1 and Glx2 mRNA 

and protein have been detected in tumor cells, such as in breast carcinoma cells, and glyoxalase inhibitors have 

been shown to inhibit the growth of tumor cells in vitro (19). Therefore, it has been proposed that the targeted 

inhibition of glyoxalase enzymes can be a viable anticancer strategy (5, 11, 13, 18, 20-26). Plasmodium 

falciparum and the protozoan Leishmania exhibit high rates of methylglyoxal formation and increased levels of 

Glx1 activity (27, 28). In Leishmania infantum, trypanothione is used instead of glutathione, and a crystal 

structure of L. infantum Glx2 bound to S-d-lactoyltrypanothione has recently been reported (29). 

Alterations in glyoxalase activity have also been associated with several other disease states. Glx1 and Glx2 can 

inhibit the formation of hyperglycemia-induced advanced glycation end products, suggesting that these 

enzymes may have a role in diabetic microangiopathy (30). Glyoxalase enzymes may also play a role in the 

pathogenesis of Alzheimer’s disease (31, 32). Finally, Glx2 has been identified as a target of p63 and p73 and 

suggested to be a prosurvival factor of the p53 family of transcription factors (33). 

Glx2 has been purified and biochemically characterized from many sources, such as plants, mammalian 

liver, Salmonella, and Escherichia coli(34-39). Cameron et al. reported the crystal structure of human Glx2 (40), 

which defined an overall structure and showed the presence of a dinuclear zinc active site similar to those in the 

enzymes of the metallo-β-lactamase superfamily (41, 42). The structure had two domains: a four-layered α 

sandwich similar to that seen in metallo-β-lactamases and a predominately α-helical domain (40). As with other 

metallo-β-lactamase family enzymes, the metal ion in the Zn1 site was coordinated by His54, His56, His110, 

bridging Asp134, and a bridging hydroxide. The metal ion in the Zn2 site was coordinated by His59, His173, 

Asp58, the bridging Asp134, the bridging hydroxide, and a terminally bound solvent molecule (Figure 1). 

Although the protein used for crystallography contained ∼1.5 mol of zinc and 0.7 mol of iron per mole of 

protein, the authors concluded that human Glx2 contains a dinuclear Zn(II) active site. The issue of iron binding 

was not considered, but this omission raises questions concerning the actual metal binding preference of human 

Glx2. 



 
Figure 1. Proposed active site of human Glx2 (40). The small spheres are solvent molecules, and the large 
spheres are Zn(II) ions. This figure was rendered using Raswin version 2.7.2.2 (60) and Protein Data Bank 
entry 1qh5. 
 

In this paper, we present the results of biochemical and spectroscopic studies of human Glx2. Recombinant 

human Glx2 was overexpressed in the presence of different combinations of zinc, iron, and cobalt, and the 

resulting enzymes were then purified to homogeneity. Steady-state kinetic studies were used to determine the 

catalytic properties of the purified Glx2 analogues. ICP-AES was used to determine the metal content of the 

purified enzymes, and nuclear magnetic resonance (NMR) and electron paramagnetic resonance spectroscopies 

(EPR) were used to probe the dinuclear metal centers. These biochemical and spectroscopic results provide 

detailed structural information about the human Glx2 metal center and insights concerning the structure and 

kinetic mechanism of the enzyme that may ultimately be used to design inhibitors with potential therapeutic 

value. 

Experimental Procedures 

Overexpression and Purification of Human Glx2 
PCR was conducted on a plasmid, which contains the gene for Glx2 from Homo sapiens, which was kindly 

provided by B. Mannervik, using the primers CCTCCATGGTAAAAATCGAACTGGTGC and 

GAGTCGACTCGAGCTCTAGATCTTTTTTTTTT that generated NdeI and HindIII restriction sites at the 5′ and 3′ ends 

of the glx2 gene. The PCR fragment was subcloned into pET26b using the NdeI and HindIII restriction sites, and 

the sequence of the resulting pGlx2/pET26b plasmid was confirmed by DNA sequencing. The pGlx2/pET26b 

plasmid was transformed into E. coli BL21(DE3) Rosetta cells, and small scale cultures were used to maximize the 

recovery of soluble protein at different temperatures (15, 22, 30, and 37 °C). A large-scale overexpression of 

human Glx2 was performed as follows. A 10 mL overnight culture of E. coli BL21(DE3) Rosetta cells containing 

pGlx2/pET26b was used to inoculate 1 L of LB (Luria-Bertani) medium containing 25 μg/mL kanamycin and 25 

μg/mL chloramphenicol. The cells were allowed to grow at 37 °C with shaking until they reached an optical 

density at 600 nm of 0.6−0.8. Protein production was induced by making the cultures 0.5 mM in isopropyl-β-d-

thiogalactopyranoside (IPTG), and the cells were shaken at 22 °C for 24 h. The cells were collected by 

centrifugation (15 min at 7000g), and the cell pellets were stored at −80 °C until further use. 

The cell pellet was thawed and resuspended in 15 mL of 10 mM MOPS (pH 6.5) containing 0.1 μM 

phenylmethanesulfonyl fluoride (PMSF). The cells were French pressed four times at 16000 psi and centrifuged 



for 30 min at 15000g and 4 °C. The supernatant was dialyzed overnight at 4 °C versus 2 L of 10 mM MOPS (pH 

6.5). The dialyzed crude protein sample was centrifuged at 15000g and was subjected to FPLC using an SP-

Sepharose column (1.5 cm × 12 cm with a 25 mL bed volume) that was equilibrated with 10 mM MOPS (pH 6.5). 

Bound proteins were eluted with a 0 to 500 mM NaCl gradient in 10 mM MOPS (pH 6.5) at a rate of 2 mL/min. 

Fractions containing human Glx2 were identified by sodium dodecyl sulfate−polyacrylamide gel electrophoresis 

(SDS−PAGE), pooled, and concentrated by using an Amicon ultrafiltration cell equipped with a YM-10 

membrane. Enzyme concentrations were determined by measuring the absorbance at 280 nm and using a molar 

extinction coefficient of 23080 M−1 cm−1(40). 

Human Glx2 was overexpressed in minimum medium consisting of 2.5 g of glucose, 5 g of casamino acids, 5.5 g 

of KH2PO4, 10.8 g of K2HPO4, 1 g of ammonium sulfate, and 10 g of NaCl per 1 L of distilled H2O in the presence of 

100 μM Zn(II), Fe(II), Mn(II), or Co(II) to evaluate its metal binding preference. The resulting enzyme samples 

were purified as described above. 

Metal Analyses 
The metal content of Glx2 samples was determined using a Varian-Liberty 150 inductively coupled plasma 

spectrometer with atomic emission spectroscopy detection (ICP-AES), as described previously (43). Protein 

samples were diluted to 10 μM with 10 mM MOPS (pH 6.5) prior to analysis. A calibration curve with four 

standards and a correlation coefficient of >0.99 was generated using Fe, Zn(II), Mn, and Co reference solutions. 

The following emission wavelengths were chosen to ensure the lowest detection limits possible: Fe, 259.940 nm; 

Zn, 213.856 nm; Mn, 257.610 nm; and Co, 238.892 nm. 

To further evaluate metal binding to Glx2, a 3-fold molar excess of Fe(NH4)2(SO4)2, Zn(SO4)2, or 

Fe(NH4)2(SO4)2 with Zn(SO4)2 was added directly to purified as-isolated human Glx2, and the mixtures were 

allowed to incubate on ice for 1 h. Unbound metal ions were removed by 4 × 1 L dialysis steps against 10 mM 

MOPS (pH 6.5) at 4 °C (12 h for each step). The metal content of these protein samples was determined using 

ICP-AES as described above. 

Steady-State Kinetics 
Steady-state kinetic parameters (Km and kcat) of human Glx2 were determined using S-d-lactoylglutathione (SLG) 

as a substrate. Thioester hydrolysis was monitored at 240 nm over 30 s at 25 °C as previously reported (43). The 

concentration of Glx2 analogues was typically 1−10 nM, and substrate concentrations used were 30−600 μM. 

The buffer used in the steady-state kinetic studies was 10 mM MOPS (pH 6.5), containing either no added 

metals, 100 μM ZnCl2, or 100 μM Fe(NH4)2(SO4)2. 

Stopped-Flow Kinetic Studies 
Stopped-flow UV−vis studies were conducted on an Applied Photophysics SX.18-MVR stopped-flow 

spectrophotometer at 2 °C. The reaction of Glx2 analogues (final concentration of 32.5 μM) and SLG (final 

concentration of 60.5 μM) was monitored at 240 nm for 200 ms. Stopped-flow absorbance data were converted 

to concentration data using the SLG extinction coefficient (−3100 M−1 cm−1). All reactions were conducted in 

triplicate, and reaction rates were determined by fitting the progress curves to a first-order exponential 

equation. 

Spectroscopic Studies 
1H NMR spectra were recorded on a Bruker Avance 500 spectrometer operating at 500.13 MHz and 298 K, with a 

magnetic field of 11.7 T, a recycle delay (AQ) of 41 ms, and a sweep width of 400 ppm. Chemical shifts were 

referenced by assigning the H2O signal a value of 4.70 ppm. A modified presaturation pulse sequence (zgpr) was 

used to suppress the proton signals originating from solvent and amino acids not coupled to the metal center. 



Line broadening of 50 Hz was used for all of the spectra. The protein concentration was ∼1 mM, and 10% D2O 

was included in samples for locking. 

EPR spectra were recorded using a Bruker E600 EleXsys spectrometer equipped with an Oxford Instruments 

ESR900 helium flow cryostat and ITC503 temperature controller, and an ER4116DM cavity operating at 9.63 GHz 

in perpendicular mode. Other recording parameters are given in the figure legend. Quantitation of Fe(III) signals 

was conducted by double integration of spectra recorded at nonsaturating power (2 mW) at 12 K. A 2 mM Cu(II)-

EDTA standard in HEPES buffer (pH 7.5) recorded at 60 K and 50 μW was used. Integration limits and correction 

factors for S = 1/2 and S = 5/2 signals, where D is assumed to be small compared to temperature, were 

employed (44-46). Co(II) signals were quantified by double integration, with reference to a frozen aqueous 

reference sample containing 2 mM Co(II), 50 mM imidazole, and 10% by volume glycerol, recorded at 12 K and 

0.8 mW. EPR simulations were performed using XSophe (Bruker Biospin), assuming S = 3/2 and |D| ≫ hν. 

Results 

Overexpression and Purification of Human Glx2 
High levels of soluble human Glx2 were produced in E. coli BL21(DE3) Rosetta cells grown in LB medium at 22 °C. 

The colorless recombinant protein eluted via SP-Sepharose chromatography at 100 mM NaCl in 10 mM MOPS 

(pH 6.5). Approximately 20 mg of purified Glx2 per liter of culture was obtained using this method. Human Glx2, 

overexpressed in LB medium (Glx2-LB), was shown to bind 0.4 ± 0.1 equiv of Zn(II) and 0.5 ± 0.1 equiv of Fe 

(Table 1). After incubation with 1.5 equiv of Zn(II) and 1.5 equiv of Fe(II), followed by exhaustive dialysis, human 

Glx2 (Glx2-LB+1.5Zn+1.5Fe) was shown to bind 1.2 ± 0.1 equiv of Zn(II) and 0.9 ± 0.1 equiv of Fe (Table 1). 

Table 1. Metal Content and Steady-State Kinetic Constants for Human Glx2 Analogues 

enzyme Zn(II) (equiv) Fe (equiv) Co or Mn (equiv) kcat (s−1) Km (μM) 

Glx2-LB 0.4 ± 0.1 0.5 ± 0.1 NDb (Mn) 570 ± 99 660 ± 190 

Glx2-LB+1.5Zn+1.5Fe 1.2 ± 0.1 0.9 ± 0.1 NDb (Mn) 740 ± 40 780 ± 68 

Glx2-Znmin 1.1 ± 0.2  NDb NDb (Mn) 407 ± 13 81 ± 11 

Glx2-Znmin+3equivZn(II) 0.9 ± 0.2  NDb NDb (Mn) 262 ± 24 53 ± 22 

Glx2-Znmin+3equivFe(II) 1.0 ± 0.1 0.7 ± 0.1 NDb (Mn) 281 ± 28 81 ± 30 

Glx2-Znmin in 100 μM Fe buffer N/Aa N/Aa N/Aa 355 ± 24 105 ± 24 

Glx2-Znmin in 100 μM Zn(II) buffer N/Aa N/Aa N/Aa 384 ± 9 109 ± 8 

Glx2-Femin+Zn(II) 0.5 ± 0.2 0.6 ± 0.2 NDb (Mn) 240 ± 5 256 ± 19 

Glx2-Comin 0.1 ± 0.1 0.2 ± 0.1 1.0 ± 0.1 (Co), NDb (Mn) 815 ± 36 110 ± 17 

Glx2-Comin+1equivZn(II) 1.0 0.2 ± 0.1 1.0 ± 0.1 Co 565 ± 30 65 ± 13 

Glx2-Znmin+1equivNi 0.1 ± 0.1 0.2 ± 0.1 1.0 Ni 439 ± 6 91 ± 9 
aNot applicable. 
bNone detected. 
 

Metal Binding to Human Glx2 
Metal binding to human Glx2 was further evaluated by expressing the enzyme in minimum medium containing 

various metal ions, and the metal content of the resulting enzymes was analyzed by ICP-AES (Table 1). Glx2, 

overexpressed in the presence of 100 μM ZnCl2 (Glx2-Znmin), bound 1.1 ± 0.2 equiv of Zn(II) and <0.005 equiv of 

Fe or Mn. When 3 equiv of Zn(II) was added to this enzyme, followed by exhaustive dialysis, the resulting 

enzyme [Glx2-Znmin+3equivZn(II)] was shown to bind 0.9 ± 0.2 equiv of Zn(II) and <0.005 equiv of Fe or Mn. 

When 3 equiv of Fe(II) was added to Glx2-Znmin followed by dialysis, the resulting enzyme [Glx2-

Znmin+3equivFe(II)] was shown to bind 1.0 ± 0.1 equiv of Zn(II) and 0.7 ± 0.1 equiv of Fe. 



Overexpression of human Glx2 in minimum medium containing 100 μM Fe(NH4)2(SO4)2 or 100 μM MnCl2 did not 

result in appreciable amounts of enzyme at any temperature. However, when 5 μM ZnCl2 was added to the 

minimal medium containing Fe(II), human Glx2 was overexpressed, and the purified enzyme [Glx2-Femin+Zn(II) in 

Table 1] was found to contain 0.5 ± 0.2 equiv of Zn(II) and 0.6 ± 0.2 equiv of Fe. This result suggests that human 

Glx2 needs Zn(II) to be overexpressed and that the enzyme may bind 1 mol each of iron and zinc per mole of 

enzyme. We tested this hypothesis by incubating Glx2-LB with 1.5 equiv of Zn(II) and Fe(II), and the resulting 

enzyme (Glx2-LB+1.5Zn+1.5Fe) was exhaustively dialyzed. Consistent with our hypothesis, Glx2-LB+1.5Zn+1.5Fe 

was shown to bind 1.2 ± 0.1 equiv of Zn(II) and 0.9 ± 0.1 equiv of Fe. 

Since none of the human Glx2 samples contained significant amount of Mn, we did not determine the effect of 

adding Zn(II) to minimal medium containing Mn(II) on Glx2 overexpression. We did, however, find that human 

GLX2 does bind cobalt. When the enzyme was overexpressed in minimal medium containing 100 μM CoCl2, Glx2-

Comin bound 0.1 ± 0.1 equiv of Zn(II), 0.2 ± 0.1 equiv of Fe, and 1.0 ± 0.1 equiv of Co. Therefore, human Glx2 

preferentially binds 1 mol each of Fe and Zn(II) per mole of enzyme and can bind 1 mol of Co, but it does not 

bind Mn. 

Steady-State Kinetics 
Steady-state kinetic studies were performed on the different forms of human Glx2 to evaluate the effect of 

different metal ions on the catalytic activity of the enzyme. Glx2-LB, which contained 0.4 ± 0.1 equiv of Zn(II) and 

0.5 ± 0.1 equiv of Fe, exhibited a kcat of 570 ± 99 s−1 and a Km of 660 ± 190 μM (Table 1). Interestingly, Glx2-

LB+1.5Zn+1.5Fe, which contained 1.2 ± 0.1 equiv of Zn(II) and 0.9 ± 0.1 equiv of Fe, exhibited relatively similar 

values [kcat of 740 ± 40 s−1 and Km of 780 ± 68 μM (Table 1)]. Glx2-Znmin exhibited a kcat of 407 ± 13 s−1 and a Km of 

81 ± 11 μM, while purified Glx2-Znmin, which was incubated with 3 equiv or Zn(II) or Fe(II) to increase the Zn(II) or 

Fe(II) content, respectively, exhibited kcat values of 262 ± 24 and 281 ± 28 s−1 and Km values of 53 ± 22 and 81 ± 

30 μM, respectively. Inclusion of 100 μM Fe(II) or Zn(II) in the assay buffer for Glx2-Znmin in an attempt to further 

load the enzyme with metal did not significantly affect the kinetic constants (Table 1). These results suggest that 

human Glx2 requires only 1 equiv of Zn(II) for activity. However, Glx2-Comin was also shown to be active with SLG 

(kcat of 815 ± 36 s−1 and Km of 110 ± 17 μM). The direct addition of 1 equiv of Co(II) to Glx2-Znmin or Glx2-

Comin resulted in the formation of a yellow precipitate, most likely due to oxidation of Co(II) to Co(III). 

Stopped-Flow Kinetic Studies 
To further probe the kinetic behavior of the different human Glx2 analogues, stopped-flow kinetic studies were 

conducted in which the disappearance of substrate SLG was monitored over time (Figure 2). Each reaction 

mixture contained 33 μM SLG and 60 μM Glx2 analogue. Glx2-LB, which contained 0.4 equiv of Zn(II) and 0.5 

equiv of Fe, exhibited a rate of 30 ± 1 s−1. Glx2-Znmin, Glx2-Znmin+3equivFe(II), Glx2-Znmin+3equivZn(II), and Glx2-

LB+1.5Zn+1.5Fe analogues exhibited essentially the same rate of 49 ± 3 s−1. The Glx2-Femin+Zn(II) analogue, 

which contains 0.5 and 0.6 equiv of Zn(II) and Fe, respectively, exhibited the slowest rate (15 ± 1 s−1). On the 

other hand, Glx2-Comin, which contains 0.1 equiv of Zn(II), 0.2 equiv of Fe, and 1.0 equiv of Co, exhibited the 

fastest rate (139 ± 2 s−1). 



 
Figure 2. Stopped-flow kinetic studies of the reaction of human Glx2 analogues with SLG at 2 °C. The 
concentration of Glx2 analogues was 32.5 μM, and the concentration for SLG was 60.5 μM. The following 

progress curves are shown: (⬡) Glx2-Femin+Zn(II), (◻) Glx2-LB, (●) Glx2-Znmin, (◆) Glx2-Znmin+3equivZn(II), (◇) 
Glx2-Znmin+3equivFe(II), (○) Glx2-LB+1.5Zn+1.5Fe, and (△) Glx2-Comin. The progress curves for Glx2-Znmin, Glx2-
Znmin+3equivZn(II), Glx2-Znmin+3equivFe(II), and Glx2-LB+1.5Zn+1.5Fe were nearly superimposable. 
 

Spectroscopic Studies 
1H NMR spectroscopy was utilized to probe the metal binding sites of human Glx2. A 1H NMR spectrum of Glx2 

containing 1.2 ± 0.1 equiv of Zn(II) and 0.9 ± 0.1 equiv of Fe (Glx2-LB+1.5Zn+1.5Fe) showed two solvent-

exchangeable peaks at 47 and 71 ppm (Figure 3A). Given the line widths of these signals and the fact that the 

predicted Zn2 site has two histidines while the Zn1 site has three histidines (40), we predict that there is a Fe(II) 

bound to the Zn2 site in this sample. Nonetheless, we cannot completely discount the possibility that Fe(II) is 

binding to a histidine from each site or the possibility that Fe(II) is binding to the Zn1 site and one of the histidine 

NH protons is in fast exchange with solvent. 

 
Figure 3. 1H NMR spectra of human Glx2 analogues in 10 mM MOPS (pH 6.5) containing 10% D2O: (A) Glx2-
LB+1.5Zn+1.5Fe, (B) Glx2-Comin, (C) Glx2-Comin with 1 equiv of Zn(II) added, and (D) ZnNi-Glx2. The enzyme 
concentrations in these samples were ∼1 mM. The asterisks denote peaks that were solvent-exchangeable. The 
magnitude of the peak at 42 ppm in the spectrum of Glx2-Comin decreased by half when the sample was 
exchanged in 90% D2O. 
 

The 1H NMR spectrum of Glx2 containing 1.0 ± 0.1 equiv of Co(II) (Table 1) exhibited five paramagnetically 

shifted resonances (Figure 3B). The peaks at 55, 71, and 87 ppm completely disappear, and the peak at 42 ppm 



decreased by helf when the sample was exchanged in 90% D2O. This result indicates that there are at least four 

solvent-exchangeable peaks in the Glx2-Comin sample. The peak at 87 ppm (spectrum B in Figure 3) is larger than 

the other peaks, suggesting that this peak may be due to two protons both of which are solvent-exchangeable. 

The NMR spectrum of Glx2-Comin suggests that Co(II) binds to four or five histidines and, therefore, that Co(II) 

binds to both the Zn1 and Zn2 sites in human Glx2. 

To probe whether Zn(II) could displace Co(II) from one of the metal binding sites, 1 equiv of Zn(II) was added to 

Glx2-Comin to generate Glx2-Comin+1equivZn(II). The resulting analogue exhibited a kcat of 565 ± 30 s−1 and a Km of 

65 ± 13 μM, when using SLG as the substrate (Table 1). The NMR spectrum of this analogue exhibited two 

solvent-exchangeable peaks at 47 and 71 ppm (Figure 3C), which are the same positions as the solvent-

exchangeable peaks for the Glx2-LB+1.5Zn+1.5Fe sample (Figure 3A). This result suggests that Glx2 preferentially 

binds Zn(II) over Co(II) in the Zn1 site, but not in the Zn2 site. 

To test whether the Zn2 site can bind other metal ions in addition to Co(II) and Fe(II), we added 1 equiv of Ni(II) 

to Glx2-Znmin to generate a ZnNi analogue of human Glx2. Glx2-Znmin with 1 equiv of Ni exhibited a kcat of 439 ± 6 

s−1 and a Km of 91 ± 9 μM when using SLG as the substrate (Table 1). A 1H NMR spectrum of ZnNi-Glx2 showed 

two relatively sharp, solvent-exchangeable peaks at 57 and 73 ppm (Figure 3D). In agreement with the other 

NMR studies, this result suggests that Ni(II) exhibits a preference for binding to the consensus Zn2 site. 

UV−vis spectra of Co(II)-containing Glx2 samples were recorded in an effort to obtain information about the 

coordination number of Co(II) in these samples (Figure 4). The spectrum of Glx2-Comin exhibited three peaks 

between 500 and 600 nm, which we assign to ligand field transitions of high-spin Co(II) and a weaker feature at 

410 nm, which we assign to the presence of Co(III) (47). The extinction coefficient of the ligand field transitions 

ranged from 28 to 42 M−1 cm−1, which suggests that the Co(II)’s are five- or six-coordinate. The addition of 1 

equiv of Zn(II) to the Glx2-Comin sample did not result in a change in the intensities of the ligand field transitions 

or the feature assigned to Co(III). This result suggests that both Co(II)’s in Glx2-Comin are five- or six-coordinate. 

There was an increase in the magnitude of the 280 nm peak, which resulted in a relatively higher absorption of 

the feature at 410 nm, and a slightly higher absorbance of the ligand field transitions at 500 and 550 nm was due 

to enzyme precipitation when Zn(II) was added to the sample. 

 
Figure 4. UV−vis spectra of Glx2-Comin and Glx2-Comin+1equivZn(II). The buffer in these samples was 10 mM 
MOPS (pH 6.5), and the enzyme concentration was 1.6 mM. 
 

Essentially indistinguishable EPR spectra were observed for both Glx2-LB and Glx2-LB+1.5Zn+1.5Fe and were 

dominated by a geff = 4.3 signal due to Fe(III) (Figure 5). Unlike the rich spectra observed from other Glx2 species, 

such as Arabidopsis mitochondrial Glx2−5 (34, 48, 49), the S = 5/2 signals from human Glx2 contained no well-

resolved features other than the geff = 4.3 line. This result suggests very high strains in the rhombic zero-field 



splitting term, E/D, and provides no confirmatory evidence of binding of Fe(III) to human Glx2 in a well-defined 

tight binding site. The intensities of the spectra from human Glx2 were equivalent and accounted for ≤0.2 Fe(III) 

per Glx2 molecule, suggesting that the majority of iron in the samples was present as Fe(II). A small feature at 

3600 G (360 mT) suggested the possibility of an Fe(III)Fe(II) center, as in Glx2−5 (34), in a small proportion of the 

molecules (Figure 3C). This was the only evidence for bona fide binding of Fe(III) to Glx2. The spectrum also 

revealed a complex pattern of lines in the geff = 2 region that, from comparison with a standard Mn(II) signal, 

suggested trace amounts of Mn(II), likely adventitiously bound. 

 
Figure 5. EPR spectra of human Glx2 analogues (A) Glx2-LB and (B) Glx2-LB+1.5Zn+1.5 Fe. Trace C shows the g ∼ 
2 region of trace B expanded (thin line). Overlaid are a spectrum of Mn(II) in modeling wax (thick line) and a 
signal from an Fe(III)Fe(II) center in Glx2−1 from Arabidopsis thaliana (thick line with circular markers). A signal 
due to Cu(II) in the spectrometer cavity was subtracted from the experimental traces of human glyoxylase, and 
imperfect subtraction is likely responsible for the poor correlation of the Mn(II) reference signal with the 
glyoxylase signal in the g ∼ 2.01 region [3100−3200 G; this is where the intense g⊥ feature of Cu(II) is observed]. 
Spectra were recorded at a microwave power of 2 mW, 10 K, and a magnetic field modulation of 12 G (1.2 mT) 
at 100 kHz. 
 

EPR spectra of Glx2-Comin indicated that only ∼25% of the Co(II) in Glx2 was EPR-visible. The EPR spectrum itself, 

recorded under nonsaturating conditions, was complex (Figure 6A). Individual species were deconvoluted by 

preferential saturation of spectral components and by the collection and analysis of spectra recorded under 

rapid passage conditions, in the presence of three distinct Co(II) species. The EPR spectrum recorded under 

partially saturating conditions (Figure 6B) indicated that the derivative feature at 2040 G is not associated with 

either the large absorption-shaped component at 1110 G or the derivative feature at 2660 G. Comparison of two 

rapid-passage spectra recorded at different microwave powers (Figure 6C,D) indicated that the derivative 

feature at 2660 G was associated with the broad absorption “tail” centered around 4000 G, and likely with some 

absorption in the 800−1600 G range. Subtraction of appropriate amounts of Figure 6D from Figure 6C yielded an 

apparently single-component axial signal that was readily simulated as an MS = ±1/2 species with an E/D of 0.1. 

The experimental data, therefore, clearly identified that three distinct species contributed to the spectrum and 

provided a full set of parameters for one of them. Using the axial species, the two associated features at 2660 

and 4000 G from Figure 6D, and the distinct feature at 2040 G from Figure 6B as a basis for three species, the 



experimental spectrum recorded under nonsaturating conditions was best simulated using the parameters 

described in the legend of Figure 6. The simulations indicate that two of the species are likely five-coordinate 

and the third is either five- or six-coordinate. It is of note that for one of the species, that of Figure 6B, 

the greal values are unusually high for Co(II) in a metalloprotein, though not excessively so. Our assignment 

to MS = ±1/2, and five-coordinate geometry, is based on comparison of the resultant greal values of 2.9, 2.9, and 

3.0 with those returned by assuming the alternative MS = ±3/2 manifold, and hence distorted tetrahedral 

geometry, of 3.4, 3.4, and 3.0, respectively. These latter values would be unprecedented for Co(II) in an 

environment of the types found in the Glx2 active site. 

 
Figure 6. EPR spectra of human Glx2 containing Co(II). (A) Experimental EPR spectrum of 1.7 mM Glx2 incubated 
with 1.7 mM Co(II), recorded at 12 K and 0.8 mW. The doubly integrated intensity of the spectrum corresponded 
to 0.4 mM Co(II). A simulated spectrum is overlaid; the simulated spectrum was generated by adding 0.21, 0.44, 
and 0.35 fractional spin equivalent of computed spectra B, D, and E, respectively. (B), Experimental spectrum 
recorded at 7.6 K and 100 mW and a computed spectrum with the following spin Hamiltonian 
parameters: S = 3/2, MS = 1/2 (E ≫ gβSH), g∥ = 3.0, g⊥ = 2.9, and E/D = 0.28. (C) Rapid-passage δχ′′/δH EPR 
spectrum recorded at 7.6 K and 100 mW. The experimental pseudoabsorption spectrum was collected with 
second-harmonic out-of-phase modulation-phase-sensitive detection. The derivative spectrum shown was 
generated by differentiating the experimental spectrum, applying 20 G pseudomodulation. (D) Rapid-passage 
δχ′′/δH EPR spectrum recorded at 7.6 K and 10 mW. A computed spectrum is overlaid, with the following 
parameters: S = 3/2, MS = 1/2 (E ≫ gβSH), g∥ = 2.15, g⊥ = 2.3, and E/D = 0.29. (E) Difference spectrum generated 
by subtraction of a fraction of the experimental spectrum D from spectrum C and an overlaid computed 
spectrum with the following parameters: S = 3/2, MS = 1/2 (E ≫ gβSH), g∥ = 2.9, g⊥ = 2.6, and E/D = 0.10. All 
spectra were recorded with a magnetic field modulation of 12 G at 100 kHz. 
 



Discussion 
The metallo-β-lactamase fold consists of an αβ/βα sandwich motif, made up of a core unit of two β-sheets 

surrounded by solvent-exposed helices (41, 42). Members of this superfamily contain a conserved HXHXD motif 

that has been shown to bind Zn(II), Fe, and Mn. There are several enzymes in the metallo-β-lactamase fold 

family, including metallo-β-lactamases, glyoxalase II, lactonase, rubredoxin:oxygen oxidoreductase (ROO), 

arylsulfatase, phosphodiesterase, and tRNA maturase (50). Most of the members of the metallo-β-lactamase 

superfamily (metallo-β-lactamases, tRNA maturase, phosphodiesterase, arylsulfatase, and lactonase) appear to 

contain dinuclear Zn(II) centers. On the other hand, rubredoxin:oxygen oxidoreductase (ROO) appears to contain 

a dinuclear iron center (51). Glx2 from E. coli was recently reported to contain a dinuclear Zn(II) center (35), 

while plant mitochondrial Glx2 (Glx2−5) has been shown to contain a FeZn center (34). Interestingly, plant 

cytoplasmic Glx2 (48, 49) and Glx2 from Salmonella typhimurium(39) can exist with a number of possible metal 

centers, including dinuclear Fe, FeZn, MnZn, and presumably dinuclear Zn(II). On the basis of a crystal structure, 

human Glx2 was reported to contain a dinuclear Zn(II) center, although the enzyme used for the crystallization 

studies contained 1.5 equiv of Zn(II) and 0.7 equiv of Fe (40). 

To more clearly define the metal binding properties of human Glx2, the protein was overexpressed in either LB 

or minimum medium containing different metal ions. Human Glx2 overexpressed in LB medium bound roughly 

equal, albeit substoichiometric, amounts of Zn(II) and Fe and exhibited a kcat of 570 s−1 and a very large Km value 

of 660 μM (Table 1). Addition of Zn(II) and Fe to this enzyme followed by dialysis resulted in an enzyme (Glx2-

LB+1.5Zn+1.5Fe) that bound 1.2 ± 0.1 equiv of Zn(II) and 0.9 ± 0.1 equiv of Fe and exhibited an ∼20% 

higher kcat and a similar Km (within error) value. The similar Km values suggest a common active species, yet a 2-

fold increase in metal content did not correspond to a 2-fold increase in kcat. This result is most likely due to the 

as yet unexplained drop in activity when Glx2 samples are dialyzed (43, 52). There were also drops in kcat when 

Glx2-Znmin was incubated with Zn(II) or Fe, followed by dialysis (Table 1). 

The large Km values exhibited by human Glx2 samples prepared from LB medium were not observed for any of 

the Glx2 analogues prepared from minimal medium (Table 1). This result suggests that the samples prepared in 

LB contain a competitive inhibitor, perhaps a peptide from the LB medium. The presence of a competitive 

inhibitor in the enzymes cultured in LB is supported by the stopped-flow studies that exhibit a lower activity for 

Glx2-LB [less Zn(II)] and a similar activity for Glx2-LB+1.5Zn+1.5Fe analogues as compared to the Glx2 samples 

prepared in minimal medium (Figure 2). The 1H NMR spectrum of Glx2-LB+1.5Zn+1.5Fe did not reveal any 

unassigned peaks (Figure 3), suggesting that a peptide does not bind directly to the Fe(II) center. However, it is 

possible that resonances from protons on a metal-bound peptide may not shift to downfield positions greater 

than 30 ppm. In addition, the crystal structure of human Glx2 identified a number of active site residues that 

interact with groups on glutathione (40), so the binding of a peptide to the metal may not be required for a 

Glx2−peptide complex to form. MALDI-TOF mass spectrometry was used to compare multiple Glx2 samples 

prepared in LB and minimal medium in an effort to identify a bound competitive inhibitor; however, no 

differences in the masses of the different GLX2 analogues were identified. It is possible that the ionization 

process coupled with the acidic matrix used in the MALDI technique resulted in the loss of the inhibitor. 

In an effort to obtain human Glx2 containing only one metal ion, the enzyme was overexpressed in minimal 

medium containing either Zn(II) or Fe(II). Glx2 overexpressed in minimal medium containing Zn(II) (Glx2-Znmin) 

was shown to bind 1.1 ± 0.2 equiv of Zn(II) and no detectable Fe or Mn (Table 1). When Glx2-Znmin was incubated 

with a 3-fold excess of Zn(II) and unbound Zn(II) was removed by dialysis, the resulting enzyme contained 0.9 ± 

0.2 equiv of Zn(II). It is unlikely that the samples of Glx2-Znmin contain a mixture of ZnZn-Glx2 and apo-Glx2, since 

we are unable to prepare an analogue of Glx2 containing 2 equiv of Zn(II) by adding Zn(II) to the sample. This 

result is in contrast to the crystallographic conclusion that human Glx2 contains a dinuclear Zn(II) metal 

center (40). With regard to iron in Glx2, both NMR and EPR indicated that iron in the iron-containing forms of 



Glx2 was largely in the Fe(II) state. However, sufficient iron (≈ 20%) was present as Fe(III) to provide for an easily 

observed EPR signal. Almost all of the Fe(III), however, was present as mononuclear Fe(III), and only a very small 

signal that was suggestive of an Fe(III)Fe(II) center was observed. These data argue against any significant 

proportion of di-iron Glx2. On the other hand, human Glx2 can bind two metal ions, and metal analyses and 

spectroscopic studies suggest that Zn(II) binds in the consensus Zn1 site, while Ni(II), Co(II), and Fe(II) can bind in 

the consensus Zn2 site. The formation of mixed-metal analogues is not surprising since mixed-metal analogues of 

several metallo-β-lactamases have been reported (53-55). However, a surprising result is that a CoCo analogue 

of human Glx2 can be prepared (Figure 3), while the biophysically and biochemically similar dinuclear Zn(II) 

analogue cannot be prepared (see metal analysis data above). Given the bioavailability of the metal ions 

tested (56), we hypothesize that human Glx2 contains a Zn(II)Fe(II) center in vivo. Unlike Arabidopsis Glx2−2 (49, 

57), dinuclear Fe- or Zn(II)-containing analogues of human Glx2 cannot be prepared. 

The steady-state kinetic studies on Glx2 samples prepared in minimal medium revealed some surprising results 

with respect to metal content and activity. Glx2-Znmin, which contains ∼1 equiv of Zn(II), is the most active Zn(II)-

containing form of these analogues (Table 1), and the presence of Zn(II) or Fe(II) in the assay buffer does not 

greatly affect the activity of the enzyme. This result demonstrates that a dinuclear metal center is not required 

for the full catalytic activity of human Glx2 and that the second metal ion does not play a large role in catalysis. 

The steady-state kinetic data did reveal that Glx2-Znmin, which was incubated with 3 equiv of Zn(II) or Fe(II), 

exhibited similar albeit lower activities. This lower activity is probably due to the dilute (low nanomolar) enzyme 

being somewhat unstable after dialysis. At the higher concentrations used in the stopped-flow studies, the Glx2-

Znmin+Zn and Glx2-Znmin+Fe analogues exhibited rates similar to that of Glx2-Znmin (Figure 2). The steady-state 

and stopped-flow kinetic data for the Glx2-Znmin samples after incubation with Zn(II) or Fe(II) and dialysis show 

that Fe has little or no effect on the activity of the enzyme. These data clearly show that human Glx2 is active 

when there is a mononuclear Zn(II) bound to the enzyme, presumably in the Zn1 site. This result is important for 

the rational design of inhibitors that target the metal binding site. 

The most active form of human Glx2 is Glx2-Comin (Table 1 and Figure 2). NMR studies show that Co(II) binds to 

both metal binding sites in this analogue (Figure 3). EPR spectra of Glx2-Comin revealed the presence of three 

distinct Co(II) species, two rhombic and one axial. The exhibition of both an axial and a rhombic signal from a 

single Co(II) binding site has been observed in a number of instances and, in some cases, has been shown to be 

due to the different effects of water and hydroxyl ligands, in a pH-dependent equilibrium, on EPR strain 

parameters (58). However, the presence of two highly rhombic species, and three species overall, indicates at 

least two Co(II) binding sites, and the spin Hamiltonian parameters indicate five- or six-fold coordination in each 

case. These data are entirely in accord with the NMR results, showing binding to both Zn1 and Zn2 sites, and with 

the five- or six-fold coordination indicated by the electronic absorption spectrum. The Co(II) EPR signals 

accounted for only ∼25% of the total Co(II) and corresponded to a population of Glx2 in which either the Zn1 or 

Zn2 site was occupied. Most of the Co(II) in Glx2, then, is likely present in a dinuclear site that is EPR-silent due to 

antiferromagnetic coupling. This coupling need only be very weak, on the order of a wavenumber, to preclude 

observation of an EPR signal. When 1 equiv of Zn(II) is added to this enzyme, Zn(II) presumably displaces Co(II) 

from the Zn1 site, and the resulting ZnCo analogue exhibits activity similar to that of Glx2-Znmin. These results 

suggest that the most active analogue of human Glx2 has Co(II) in the Zn1 site and that the metal ion in the 

Zn2 site plays little role in catalysis. We have attempted to prepare a CoCo analogue of human Glx2 by adding 

Co(II) to Glx2-Comin; however, the enzyme precipitates upon addition of Co(II). It is not clear why Glx2-Comin is 

more active than the corresponding Glx2-Znmin or ZnCo analogues; however, the greater Lewis acidity of Co(II) as 

compared to that of Zn(II) may explain some of the differences (59). Co(II)-substituted liver alcohol 

dehydrogenase is 140% more active than the corresponding Zn(II)-containing enzyme (59). In spite of greater 

activity, the relatively lower bioavailability of Co(II), as compared to that of Zn(II) or Fe, strongly suggests that 

human Glx2 is not a Co(II)-containing enzyme. 



The results present here demonstrate that human Glx2 is active as a mononuclear Zn(II)-containing enzyme and 

that Zn(II) binds preferentially to the consensus Zn1 site. This finding is similar to a recent study that reported 

that metallo-β-lactamase L1 is active as a mononuclear Zn(II) enzyme when Zn(II) is bound in the Zn1 site (53). 

The metal content of the active forms of other enzymes belonging to the metallo-β-lactamase superfamily is not 

clear. Unlike the other enzymes in this superfamily, the metal ion in the Zn2 site does not appear to play a 

significant role in human Glx2. Nonetheless, given the bioavailability of Zn(II) and Fe in cells (56), we predict that 

human Glx2 contains a Zn(II)Fe(II) metal binding site in vivo and not a Zn(II)Zn(II) site as previously reported (40). 

It has been proposed that the enzymes in the metallo-β-lactamase superfamily arose due to a gene duplication 

event (50), and the presence of a dinuclear metal binding site may offer some of the enzymes increased activity. 

Since Glx2 appears to be a critical enzyme involved in the cellular detoxification of 2-oxoaldehydes (1), it may 

have evolved to be active with only one metal ion, so that the enzyme is active in the presence of low Zn(II) 

concentrations. The ability to utilize only the single, non-redox active Zn(II) site for catalysis would better 

position the enzyme to react with the oxidizing substrates. 
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